Answer
Verified
460.5k+ views
Hint: Potassium permanganate in acidic medium will act as an oxidising agent and iron’s oxidation state will increase from ferrous to ferric. Also, the oxalate anion will get reduced to ${\text{C}}{{\text{O}}_{\text{2}}}$.
Complete step by step answer:
First thing you should know is how $KMn{O_4}$ behaves in different mediums
In acidic medium, $KMn{O_4}$ accepts ${\text{5}}{{\text{e}}^ - }$, manganese changes its oxidation. no. from $ + 7$ to $ + 2.$
In neutral medium, $KMn{O_4}$ accepts ${\text{3}}{{\text{e}}^ - }$, manganese changes its oxidation no. from $ + 7$ to $ + 4.$
In basic medium, $KMn{O_4}$ accepts ${\text{1}}{{\text{e}}^ - }$, manganese changes its oxidation no. from $ + 7$ to $ + 6.$
Secondly, ferrous ion will always get oxidized to ferrate, i.e. $ + 2$ to ${\text{ + 3}}$, that means it loses ${\text{1}}{{\text{e}}^{\text{ - }}}$. Oxalate ion gets oxidized to Carbon dioxide, i.e. carbon changes its oxidation no. from $ + 3$ to $ + 4$, but oxalate ion contains two carbons, so it looses \[{\text{2}}{{\text{e}}^ - }\]. that means $1$ mole ferrous oxalate is going to lose ${\text{3}}{{\text{e}}^ - }$
Now , we know from point $1$, that $1$ mole $KMn{O_4}$ in acidic medium can accept ${\text{5}}{{\text{e}}^{\text{ - }}}$-.
for ${\text{5}}{{\text{e}}^ - }$, $1$ mole $KMn{O_4}$ is produced
Therefore, ${\text{1}}{{\text{e}}^ - }$ will give $\dfrac{1}{5}$ mole $KMn{O_4}$
And ${\text{3}}{{\text{e}}^ - }$ will give $\dfrac{3}{5}$ mole $KMn{O_4}$
The skeletal equation:
$KMn{O_4} + Fe{C_2}{O_4} + {H^ + } \to F{e^{3 + }} + C{O_2} + M{n^{2 + }} + {K^ + } + {H_2}O$
Here the ${{\text{H}}^{\text{ + }}}$ can come from any strong mineral acid.
If $3$ moles of $KMn{O_4}$ react with $5$ moles of ${\text{Fe}}{{\text{C}}_{\text{2}}}{{\text{O}}_{\text{4}}}$, then with one mole of ${\text{Fe}}{{\text{C}}_{\text{2}}}{{\text{O}}_{\text{4}}}$, $\dfrac{3}{5}$ or $0.6$ moles of $KMn{O_4}$ will react. (This makes sense, as iron oxalate is present in more quantity per mole here
So, the correct answer is Option C .
Note:
If the reaction is not fully balanced ,you still need to balance the hydrogens by adding the suitable number of ions on the side deficient in hydrogen, and add more molecules of water on the other side to completely balance the reaction.
Complete step by step answer:
First thing you should know is how $KMn{O_4}$ behaves in different mediums
In acidic medium, $KMn{O_4}$ accepts ${\text{5}}{{\text{e}}^ - }$, manganese changes its oxidation. no. from $ + 7$ to $ + 2.$
In neutral medium, $KMn{O_4}$ accepts ${\text{3}}{{\text{e}}^ - }$, manganese changes its oxidation no. from $ + 7$ to $ + 4.$
In basic medium, $KMn{O_4}$ accepts ${\text{1}}{{\text{e}}^ - }$, manganese changes its oxidation no. from $ + 7$ to $ + 6.$
Secondly, ferrous ion will always get oxidized to ferrate, i.e. $ + 2$ to ${\text{ + 3}}$, that means it loses ${\text{1}}{{\text{e}}^{\text{ - }}}$. Oxalate ion gets oxidized to Carbon dioxide, i.e. carbon changes its oxidation no. from $ + 3$ to $ + 4$, but oxalate ion contains two carbons, so it looses \[{\text{2}}{{\text{e}}^ - }\]. that means $1$ mole ferrous oxalate is going to lose ${\text{3}}{{\text{e}}^ - }$
Now , we know from point $1$, that $1$ mole $KMn{O_4}$ in acidic medium can accept ${\text{5}}{{\text{e}}^{\text{ - }}}$-.
for ${\text{5}}{{\text{e}}^ - }$, $1$ mole $KMn{O_4}$ is produced
Therefore, ${\text{1}}{{\text{e}}^ - }$ will give $\dfrac{1}{5}$ mole $KMn{O_4}$
And ${\text{3}}{{\text{e}}^ - }$ will give $\dfrac{3}{5}$ mole $KMn{O_4}$
The skeletal equation:
$KMn{O_4} + Fe{C_2}{O_4} + {H^ + } \to F{e^{3 + }} + C{O_2} + M{n^{2 + }} + {K^ + } + {H_2}O$
Here the ${{\text{H}}^{\text{ + }}}$ can come from any strong mineral acid.
If $3$ moles of $KMn{O_4}$ react with $5$ moles of ${\text{Fe}}{{\text{C}}_{\text{2}}}{{\text{O}}_{\text{4}}}$, then with one mole of ${\text{Fe}}{{\text{C}}_{\text{2}}}{{\text{O}}_{\text{4}}}$, $\dfrac{3}{5}$ or $0.6$ moles of $KMn{O_4}$ will react. (This makes sense, as iron oxalate is present in more quantity per mole here
So, the correct answer is Option C .
Note:
If the reaction is not fully balanced ,you still need to balance the hydrogens by adding the suitable number of ions on the side deficient in hydrogen, and add more molecules of water on the other side to completely balance the reaction.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE