Answer
Verified
398.1k+ views
Hint: In the above question, the expression for the number of particles crossing a unit area perpendicular to X-axis in unit time is given. First we need to express the quantities in the given expression in terms of their dimensions. Further accordingly substituting them in the above expression will enable us to determine the dimensions of D.
Formula used:
$\text{A=}\left[ {{\text{M}}^{\text{0}}}{{\text{L}}^{\text{2}}}{{\text{T}}^{\text{0}}} \right]$
$\text{V=}\left[ {{\text{M}}^{\text{0}}}{{\text{L}}^{3}}{{\text{T}}^{\text{0}}} \right]$
$\text{L=}\left[ {{\text{M}}^{\text{0}}}\text{L}{{\text{T}}^{\text{0}}} \right]$
$t=\left[ {{\text{M}}^{\text{0}}}{{\text{L}}^{0}}\text{T} \right]$
Complete step-by-step solution:
In the above question it is given that ‘n’ is the number of particles crossing a unit area perpendicular to X-axis in unit time. The dimensions of area is $\text{A=}\left[ {{\text{M}}^{\text{0}}}{{\text{L}}^{\text{2}}}{{\text{T}}^{\text{0}}} \right]$ and that of time is $\text{t=}\left[ {{\text{M}}^{\text{0}}}{{\text{L}}^{0}}\text{T} \right]$. Hence the dimension n(d)of n is equal to,
$\begin{align}
& n(d)=\dfrac{1}{A\times t} \\
& \Rightarrow n(d)=\dfrac{1}{\left[ {{\text{M}}^{\text{0}}}{{\text{L}}^{\text{2}}}{{\text{T}}^{\text{0}}} \right]\times \left[ {{\text{M}}^{\text{0}}}{{\text{L}}^{0}}\text{T} \right]} \\
& \therefore n(d)=\left[ {{\text{M}}^{\text{0}}}{{\text{L}}^{\text{-2}}}{{\text{T}}^{-1}} \right] \\
\end{align}$
The difference of a same physical quantity has the same dimension. In the question it is mentioned that ${{n}_{1}}$ and ${{n}_{2}}$ are the number of particles per unit volume. Hence the dimension ${{n}_{2}}-{{n}_{1}}(d)$ of ${{n}_{2}}-{{n}_{1}}$ is
$\begin{align}
& {{n}_{2}}-{{n}_{1}}(d)=\dfrac{1}{V} \\
& \Rightarrow {{n}_{2}}-{{n}_{1}}(d)=\dfrac{1}{\left[ {{\text{M}}^{\text{0}}}{{\text{L}}^{3}}{{\text{T}}^{\text{0}}} \right]} \\
& \therefore {{n}_{2}}-{{n}_{1}}(d)=\left[ {{\text{M}}^{\text{0}}}{{\text{L}}^{-3}}{{\text{T}}^{\text{0}}} \right] \\
\end{align}$
Similarly the dimension ${{x}_{2}}-{{x}_{1}}(d)$ of ${{x}_{2}}-{{x}_{1}}$ is given by,
$\begin{align}
& {{x}_{2}}-{{x}_{1}}(d)=L \\
& \therefore {{x}_{2}}-{{x}_{1}}(d)=\text{L=}\left[ {{\text{M}}^{\text{0}}}\text{L}{{\text{T}}^{\text{0}}} \right] \\
\end{align}$
From the relation given in the question, the dimension D(d) of diffusion constant is equal to,
$n(d)=-D(d)\dfrac{{{n}_{2}}-{{n}_{1}}(d)}{{{x}_{2}}-{{x}_{1}}(d)}$
$\Rightarrow \left[ {{\text{M}}^{\text{0}}}{{\text{L}}^{\text{-2}}}{{\text{T}}^{-1}} \right]=-D(d)\dfrac{\left[ {{\text{M}}^{\text{0}}}{{\text{L}}^{-3}}{{\text{T}}^{\text{0}}} \right]}{\left[ {{\text{M}}^{\text{0}}}\text{L}{{\text{T}}^{\text{0}}} \right]}$
$\begin{align}
& \Rightarrow \left[ {{\text{M}}^{\text{0}}}{{\text{L}}^{\text{-2}}}{{\text{T}}^{-1}} \right]=-D(d)\left[ {{\text{M}}^{\text{0}}}{{\text{L}}^{-4}}{{\text{T}}^{\text{0}}} \right] \\
& \therefore D(d)=\left[ {{\text{M}}^{\text{0}}}{{\text{L}}^{\text{2}}}{{\text{T}}^{-1}} \right] \\
\end{align}$
Therefore the dimension of D are $\left[ {{\text{M}}^{\text{0}}}{{\text{L}}^{\text{2}}}{{\text{T}}^{-1}} \right]$
Note: Number of particles is basically a constant. Hence it does not have any dimension. It is also to be noted that we have ignored the negative sign in the above relation given. This is because a negative sign can be considered as -1. Since -1 is nothing but a constant, hence it can be implied that it is dimensionless. It is also to be noted that the powers of the fundamental dimensions of the above physical quantities are added or subtracted using the laws of exponent.
Formula used:
$\text{A=}\left[ {{\text{M}}^{\text{0}}}{{\text{L}}^{\text{2}}}{{\text{T}}^{\text{0}}} \right]$
$\text{V=}\left[ {{\text{M}}^{\text{0}}}{{\text{L}}^{3}}{{\text{T}}^{\text{0}}} \right]$
$\text{L=}\left[ {{\text{M}}^{\text{0}}}\text{L}{{\text{T}}^{\text{0}}} \right]$
$t=\left[ {{\text{M}}^{\text{0}}}{{\text{L}}^{0}}\text{T} \right]$
Complete step-by-step solution:
In the above question it is given that ‘n’ is the number of particles crossing a unit area perpendicular to X-axis in unit time. The dimensions of area is $\text{A=}\left[ {{\text{M}}^{\text{0}}}{{\text{L}}^{\text{2}}}{{\text{T}}^{\text{0}}} \right]$ and that of time is $\text{t=}\left[ {{\text{M}}^{\text{0}}}{{\text{L}}^{0}}\text{T} \right]$. Hence the dimension n(d)of n is equal to,
$\begin{align}
& n(d)=\dfrac{1}{A\times t} \\
& \Rightarrow n(d)=\dfrac{1}{\left[ {{\text{M}}^{\text{0}}}{{\text{L}}^{\text{2}}}{{\text{T}}^{\text{0}}} \right]\times \left[ {{\text{M}}^{\text{0}}}{{\text{L}}^{0}}\text{T} \right]} \\
& \therefore n(d)=\left[ {{\text{M}}^{\text{0}}}{{\text{L}}^{\text{-2}}}{{\text{T}}^{-1}} \right] \\
\end{align}$
The difference of a same physical quantity has the same dimension. In the question it is mentioned that ${{n}_{1}}$ and ${{n}_{2}}$ are the number of particles per unit volume. Hence the dimension ${{n}_{2}}-{{n}_{1}}(d)$ of ${{n}_{2}}-{{n}_{1}}$ is
$\begin{align}
& {{n}_{2}}-{{n}_{1}}(d)=\dfrac{1}{V} \\
& \Rightarrow {{n}_{2}}-{{n}_{1}}(d)=\dfrac{1}{\left[ {{\text{M}}^{\text{0}}}{{\text{L}}^{3}}{{\text{T}}^{\text{0}}} \right]} \\
& \therefore {{n}_{2}}-{{n}_{1}}(d)=\left[ {{\text{M}}^{\text{0}}}{{\text{L}}^{-3}}{{\text{T}}^{\text{0}}} \right] \\
\end{align}$
Similarly the dimension ${{x}_{2}}-{{x}_{1}}(d)$ of ${{x}_{2}}-{{x}_{1}}$ is given by,
$\begin{align}
& {{x}_{2}}-{{x}_{1}}(d)=L \\
& \therefore {{x}_{2}}-{{x}_{1}}(d)=\text{L=}\left[ {{\text{M}}^{\text{0}}}\text{L}{{\text{T}}^{\text{0}}} \right] \\
\end{align}$
From the relation given in the question, the dimension D(d) of diffusion constant is equal to,
$n(d)=-D(d)\dfrac{{{n}_{2}}-{{n}_{1}}(d)}{{{x}_{2}}-{{x}_{1}}(d)}$
$\Rightarrow \left[ {{\text{M}}^{\text{0}}}{{\text{L}}^{\text{-2}}}{{\text{T}}^{-1}} \right]=-D(d)\dfrac{\left[ {{\text{M}}^{\text{0}}}{{\text{L}}^{-3}}{{\text{T}}^{\text{0}}} \right]}{\left[ {{\text{M}}^{\text{0}}}\text{L}{{\text{T}}^{\text{0}}} \right]}$
$\begin{align}
& \Rightarrow \left[ {{\text{M}}^{\text{0}}}{{\text{L}}^{\text{-2}}}{{\text{T}}^{-1}} \right]=-D(d)\left[ {{\text{M}}^{\text{0}}}{{\text{L}}^{-4}}{{\text{T}}^{\text{0}}} \right] \\
& \therefore D(d)=\left[ {{\text{M}}^{\text{0}}}{{\text{L}}^{\text{2}}}{{\text{T}}^{-1}} \right] \\
\end{align}$
Therefore the dimension of D are $\left[ {{\text{M}}^{\text{0}}}{{\text{L}}^{\text{2}}}{{\text{T}}^{-1}} \right]$
Note: Number of particles is basically a constant. Hence it does not have any dimension. It is also to be noted that we have ignored the negative sign in the above relation given. This is because a negative sign can be considered as -1. Since -1 is nothing but a constant, hence it can be implied that it is dimensionless. It is also to be noted that the powers of the fundamental dimensions of the above physical quantities are added or subtracted using the laws of exponent.
Recently Updated Pages
A wire of length L and radius r is clamped rigidly class 11 physics JEE_Main
The number of moles of KMnO4 that will be needed to class 11 chemistry JEE_Main
The oxidation process involves class 11 chemistry JEE_Main
A car starts from rest to cover a distance s The coefficient class 11 physics JEE_Main
The transalkenes are formed by the reduction of alkynes class 11 chemistry JEE_Main
At what temperature will the total KE of 03 mol of class 11 chemistry JEE_Main
Trending doubts
Which is the longest day and shortest night in the class 11 sst CBSE
Who was the Governor general of India at the time of class 11 social science CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
In a democracy the final decisionmaking power rests class 11 social science CBSE