Answer
Verified
495.6k+ views
Hint – To find the number of non-trivial solutions of given equations we write the set of equations in matrix form. Then find its determinant and equate it to 0.
Complete step-by-step answer:
For a non-trivial solution the determinant of the respective matrix = 0
$ \Rightarrow \left( {\begin{array}{*{20}{c}}
{\text{t}}&{{\text{t + 1}}}&{{\text{t - 1}}} \\
{{\text{t + 1}}}&{\text{t}}&{{\text{t + 2}}} \\
{{\text{t - 1}}}&{{\text{t + 2}}}&{\text{t}}
\end{array}} \right)$ = 0
Now, we reduce the matrix using row operations
R2 -> R2 – R1
R3 -> R3 – R1
Which gives us,
\[\left( {\begin{array}{*{20}{c}}
{\text{t}}&{{\text{t + 1}}}&{{\text{t - 1}}} \\
{\text{1}}&{ - 1}&3 \\
{ - 1}&1&1
\end{array}} \right) = 0\]
For $
{\text{A = }}\left( {\begin{array}{*{20}{c}}
{\text{a}}&{\text{b}}&{\text{c}} \\
{\text{d}}&{\text{e}}&{\text{f}} \\
{\text{g}}&{\text{h}}&{\text{i}}
\end{array}} \right) \\
\\
$, Det A = a (ei - fh) - b (di - fg) + c (dh - eg)
⟹t (-1 x 1 – 3 x 1) – (t + 1) (1 x 1 – (3 x -1)) + (t -1) (1 x 1 – (-1 x -1)) = 0
⟹t (-1 -3) – (t + 1)(1 +3) + (t – 1)(1 – 1) = 0
⟹-4t -4t -4 = 0
⟹-8t – 4 = 0
⟹t =$ - \dfrac{1}{2}$.
‘t’ has only one value for which the system has non- homogeneous equations and has non- trivial solutions. Hence Option C is the correct answer.
Note: The key point to solve such problems is to know that for a non-trivial solution the determinant of the matrix is zero.
A (n x n) homogeneous system of linear equations has a unique solution (the trivial solution) if and only if its determinant is non-zero. If this determinant is zero, then the system has an infinite number of solutions.
Complete step-by-step answer:
For a non-trivial solution the determinant of the respective matrix = 0
$ \Rightarrow \left( {\begin{array}{*{20}{c}}
{\text{t}}&{{\text{t + 1}}}&{{\text{t - 1}}} \\
{{\text{t + 1}}}&{\text{t}}&{{\text{t + 2}}} \\
{{\text{t - 1}}}&{{\text{t + 2}}}&{\text{t}}
\end{array}} \right)$ = 0
Now, we reduce the matrix using row operations
R2 -> R2 – R1
R3 -> R3 – R1
Which gives us,
\[\left( {\begin{array}{*{20}{c}}
{\text{t}}&{{\text{t + 1}}}&{{\text{t - 1}}} \\
{\text{1}}&{ - 1}&3 \\
{ - 1}&1&1
\end{array}} \right) = 0\]
For $
{\text{A = }}\left( {\begin{array}{*{20}{c}}
{\text{a}}&{\text{b}}&{\text{c}} \\
{\text{d}}&{\text{e}}&{\text{f}} \\
{\text{g}}&{\text{h}}&{\text{i}}
\end{array}} \right) \\
\\
$, Det A = a (ei - fh) - b (di - fg) + c (dh - eg)
⟹t (-1 x 1 – 3 x 1) – (t + 1) (1 x 1 – (3 x -1)) + (t -1) (1 x 1 – (-1 x -1)) = 0
⟹t (-1 -3) – (t + 1)(1 +3) + (t – 1)(1 – 1) = 0
⟹-4t -4t -4 = 0
⟹-8t – 4 = 0
⟹t =$ - \dfrac{1}{2}$.
‘t’ has only one value for which the system has non- homogeneous equations and has non- trivial solutions. Hence Option C is the correct answer.
Note: The key point to solve such problems is to know that for a non-trivial solution the determinant of the matrix is zero.
A (n x n) homogeneous system of linear equations has a unique solution (the trivial solution) if and only if its determinant is non-zero. If this determinant is zero, then the system has an infinite number of solutions.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Give 10 examples for herbs , shrubs , climbers , creepers