
The number of ways in which 6 men and 5 women can dine at a round table if no two women are to sit together is given by
A. \[6! \times 5!\]
B. \[30\]
C. \[5! \times 4!\]
D. \[7! \times 5!\]
Answer
216.6k+ views
Hint: In this question, we need to find the total number of ways in which 6 men and 5 women can dine at a round table if no two women are to sit together. For this, we need to use the concept of factorial and mathematical identities for the factorial of a number and the permutation.
Formula used: We will use the following mathematical rule for the factorial of a number.
\[n! = n \times \left( {n - 1} \right) \times .... \times 1\]
Here, \[n\] is a positive integer.
Also, the permutation rule is given by
\[{}^n{P_r} = \dfrac{{n!}}{{\left( {n - r} \right)!}}\]
Here, \[n\] and \[r\] are positive integers.
Complete step-by-step solution:
We know that there are 6 men and 5 women.
Here, we can place 5 women in 6 empty places between them so that no two women will be together.
So, this can be done in the following way.
Thus, we get
\[{}^6{P_5} = \dfrac{{6!}}{{\left( {6 - 5} \right)!}}\]
By simplifying, we get
\[{}^6{P_5} = \dfrac{{6!}}{{\left( 1 \right)!}}\]
\[{}^6{P_5} = 6!\]
\[{}^6{P_5} = 6 \times 5 \times 4 \times 3 \times 2 \times 1\]
\[{}^6{P_5} = 720\]
Since the activities are interdependent, the number of ways in which 6 men and 5 women can dine at a round table if no two women sit together is limited.
Thus, we get
\[6! \times 5! = 720 \times 5 \times 4 \times 3 \times 2 \times 1\]
\[6! \times 5! = 720 \times 120\]
By simplifying, we get
\[6! \times 5! = 86400\]
Hence, there are 86400 ways in which 6 men and 5 women can dine at a round table if no two women are to sit together.
That is \[6! \times 5!\] ways.
Therefore, the correct option is (A).
Note: Many students make mistakes in the permutation formula. They may confuse about the combination and permutation formulae. Due to the very small difference between the two formulae, we get a big difference in the desired result.
Formula used: We will use the following mathematical rule for the factorial of a number.
\[n! = n \times \left( {n - 1} \right) \times .... \times 1\]
Here, \[n\] is a positive integer.
Also, the permutation rule is given by
\[{}^n{P_r} = \dfrac{{n!}}{{\left( {n - r} \right)!}}\]
Here, \[n\] and \[r\] are positive integers.
Complete step-by-step solution:
We know that there are 6 men and 5 women.
Here, we can place 5 women in 6 empty places between them so that no two women will be together.
So, this can be done in the following way.
Thus, we get
\[{}^6{P_5} = \dfrac{{6!}}{{\left( {6 - 5} \right)!}}\]
By simplifying, we get
\[{}^6{P_5} = \dfrac{{6!}}{{\left( 1 \right)!}}\]
\[{}^6{P_5} = 6!\]
\[{}^6{P_5} = 6 \times 5 \times 4 \times 3 \times 2 \times 1\]
\[{}^6{P_5} = 720\]
Since the activities are interdependent, the number of ways in which 6 men and 5 women can dine at a round table if no two women sit together is limited.
Thus, we get
\[6! \times 5! = 720 \times 5 \times 4 \times 3 \times 2 \times 1\]
\[6! \times 5! = 720 \times 120\]
By simplifying, we get
\[6! \times 5! = 86400\]
Hence, there are 86400 ways in which 6 men and 5 women can dine at a round table if no two women are to sit together.
That is \[6! \times 5!\] ways.
Therefore, the correct option is (A).
Note: Many students make mistakes in the permutation formula. They may confuse about the combination and permutation formulae. Due to the very small difference between the two formulae, we get a big difference in the desired result.
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Electricity and Magnetism Explained: Key Concepts & Applications

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding Atomic Structure for Beginners

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

Understanding the Electric Field of a Uniformly Charged Ring

