
The number of ways in which 6 men and 5 women can dine at a round table if no two women are to sit together is given by
A. \[6! \times 5!\]
B. \[30\]
C. \[5! \times 4!\]
D. \[7! \times 5!\]
Answer
232.8k+ views
Hint: In this question, we need to find the total number of ways in which 6 men and 5 women can dine at a round table if no two women are to sit together. For this, we need to use the concept of factorial and mathematical identities for the factorial of a number and the permutation.
Formula used: We will use the following mathematical rule for the factorial of a number.
\[n! = n \times \left( {n - 1} \right) \times .... \times 1\]
Here, \[n\] is a positive integer.
Also, the permutation rule is given by
\[{}^n{P_r} = \dfrac{{n!}}{{\left( {n - r} \right)!}}\]
Here, \[n\] and \[r\] are positive integers.
Complete step-by-step solution:
We know that there are 6 men and 5 women.
Here, we can place 5 women in 6 empty places between them so that no two women will be together.
So, this can be done in the following way.
Thus, we get
\[{}^6{P_5} = \dfrac{{6!}}{{\left( {6 - 5} \right)!}}\]
By simplifying, we get
\[{}^6{P_5} = \dfrac{{6!}}{{\left( 1 \right)!}}\]
\[{}^6{P_5} = 6!\]
\[{}^6{P_5} = 6 \times 5 \times 4 \times 3 \times 2 \times 1\]
\[{}^6{P_5} = 720\]
Since the activities are interdependent, the number of ways in which 6 men and 5 women can dine at a round table if no two women sit together is limited.
Thus, we get
\[6! \times 5! = 720 \times 5 \times 4 \times 3 \times 2 \times 1\]
\[6! \times 5! = 720 \times 120\]
By simplifying, we get
\[6! \times 5! = 86400\]
Hence, there are 86400 ways in which 6 men and 5 women can dine at a round table if no two women are to sit together.
That is \[6! \times 5!\] ways.
Therefore, the correct option is (A).
Note: Many students make mistakes in the permutation formula. They may confuse about the combination and permutation formulae. Due to the very small difference between the two formulae, we get a big difference in the desired result.
Formula used: We will use the following mathematical rule for the factorial of a number.
\[n! = n \times \left( {n - 1} \right) \times .... \times 1\]
Here, \[n\] is a positive integer.
Also, the permutation rule is given by
\[{}^n{P_r} = \dfrac{{n!}}{{\left( {n - r} \right)!}}\]
Here, \[n\] and \[r\] are positive integers.
Complete step-by-step solution:
We know that there are 6 men and 5 women.
Here, we can place 5 women in 6 empty places between them so that no two women will be together.
So, this can be done in the following way.
Thus, we get
\[{}^6{P_5} = \dfrac{{6!}}{{\left( {6 - 5} \right)!}}\]
By simplifying, we get
\[{}^6{P_5} = \dfrac{{6!}}{{\left( 1 \right)!}}\]
\[{}^6{P_5} = 6!\]
\[{}^6{P_5} = 6 \times 5 \times 4 \times 3 \times 2 \times 1\]
\[{}^6{P_5} = 720\]
Since the activities are interdependent, the number of ways in which 6 men and 5 women can dine at a round table if no two women sit together is limited.
Thus, we get
\[6! \times 5! = 720 \times 5 \times 4 \times 3 \times 2 \times 1\]
\[6! \times 5! = 720 \times 120\]
By simplifying, we get
\[6! \times 5! = 86400\]
Hence, there are 86400 ways in which 6 men and 5 women can dine at a round table if no two women are to sit together.
That is \[6! \times 5!\] ways.
Therefore, the correct option is (A).
Note: Many students make mistakes in the permutation formula. They may confuse about the combination and permutation formulae. Due to the very small difference between the two formulae, we get a big difference in the desired result.
Recently Updated Pages
JEE Main 2023 (January 31 Morning Shift) Chemistry Question Paper with Solutions [PDF]

JEE Main 2022 (January 31st Shift 2) Chemistry Question Paper with Answer Key

JEE Main 2023 (January 30th Shift 1) Chemistry Question Paper with Answer Key

JEE Main 2023 (January 30th Shift 2) Chemistry Question Paper with Answer Key

JEE Main 2023 (January 29th Shift 2) Chemistry Question Paper with Answer Key

JEE Main 2023 (January 25th Shift 2) Chemistry Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

Understanding How a Current Loop Acts as a Magnetic Dipole

