The number of ways in which we can arrange n ladies and n gentlemen at a round table so that 2 ladies and 2 gentlemen may not sit next to one another is:
\[
a.{\text{ }}\left( {n - 1} \right)!\left( {n - 2} \right)! \\
b.{\text{ }}\left( {{\text{n!}}} \right)\left( {n - 1} \right)! \\
c.{\text{ }}\left( {n + 1} \right)!\left( {n!} \right) \\
d.{\text{ None of these}} \\
\]
Answer
Verified
513.6k+ views
Hint: - Number of ways to sit n persons on a round table is $ = \left( {n - 1} \right)!$
First we have to arrange n gentlemen around the round table so, number of ways to do so
$ = \left( {n - 1} \right)!$
Now, when these men are arranged and seated than there are n spaces between each man where we will arrange and seated n ladies so that two ladies and two gentlemen may not sit each other$ = {}^n{C_n}\left( {n!} \right)\left( {n - n} \right)! = {}^n{C_n}\left( {n!} \right)\left( {0!} \right)$
As we know the value of ${}^n{C_n} = n,{\text{ }}0! = 1$
$ \Rightarrow {}^n{C_n}\left( {n!} \right)\left( {0!} \right) = 1 \times n! \times 1 = n!$
Hence, total number of ways of sitting so that two ladies and two gentlemen may not sit each other
$ = \left( {n - 1} \right)!\left( {n!} \right)$
Hence, option (b) is correct.
Note: - Whenever we face such types of problems first calculate the number of ways to sit $n$gentlemen on a round table, then calculate the number of ways to sit $n$ ladies between them, then multiply these two values we will get the required answer.
First we have to arrange n gentlemen around the round table so, number of ways to do so
$ = \left( {n - 1} \right)!$
Now, when these men are arranged and seated than there are n spaces between each man where we will arrange and seated n ladies so that two ladies and two gentlemen may not sit each other$ = {}^n{C_n}\left( {n!} \right)\left( {n - n} \right)! = {}^n{C_n}\left( {n!} \right)\left( {0!} \right)$
As we know the value of ${}^n{C_n} = n,{\text{ }}0! = 1$
$ \Rightarrow {}^n{C_n}\left( {n!} \right)\left( {0!} \right) = 1 \times n! \times 1 = n!$
Hence, total number of ways of sitting so that two ladies and two gentlemen may not sit each other
$ = \left( {n - 1} \right)!\left( {n!} \right)$
Hence, option (b) is correct.
Note: - Whenever we face such types of problems first calculate the number of ways to sit $n$gentlemen on a round table, then calculate the number of ways to sit $n$ ladies between them, then multiply these two values we will get the required answer.
Recently Updated Pages
Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE
The highest possible oxidation states of Uranium and class 11 chemistry CBSE
Find the value of x if the mode of the following data class 11 maths CBSE
Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE
A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE
Statement I Reactivity of aluminium decreases when class 11 chemistry CBSE
Trending doubts
10 examples of friction in our daily life
The correct order of melting point of 14th group elements class 11 chemistry CBSE
Difference Between Prokaryotic Cells and Eukaryotic Cells
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
State and prove Bernoullis theorem class 11 physics CBSE
What organs are located on the left side of your body class 11 biology CBSE