Answer
Verified
468.3k+ views
Hint: For solving such a question, we are going to frame the above question in linear equations in two variables. We will find the equation of the straight line from the given condition. We will get the final result.
Complete step-by-step answer:
980 liters of milk each week at Rs 14/liter and 1220 liters of milk each week at Rs 16/liter. The relationship between selling price and demand is linear.
We have to find how many liters he could sell weekly at Rs 17/liter.
Let find the linear relations
Let us assume that the selling price/liter is along X-axis and demand along Y-axis.
Therefore, points (14, 980) and (16, 1220) satisfy the linear relationship between selling price and demand.
Hence, line passing through these points is:
\[
\Rightarrow y - 980 = \dfrac{{1220 - 980}}{{16 - 14}}\left( {x - 14} \right) \\
\Rightarrow y - 980 = \dfrac{{240}}{2}\left( {x - 14} \right) \\
\Rightarrow y - 980 = 120\left( {x - 14} \right) \\
\Rightarrow y = 120\left( {x - 14} \right) + 980 \\
\]
Put x = 17 in above equation, we get:
$
y = 120\left( {17 - 14} \right) + 980 \\
y = 120 \times 3 + 980 \\
y = 1340 \\
$
Hence, the owner of the milk store can sell 1340 liters of milk weekly at Rs 17/liter
Additional information: Linear equations in two variables If a, b, and r are real numbers (and if a and b are not both equal to 0) then ax + by = r is called a linear equation in two variables. (The “two variables” are the x and the y.) The numbers a and b are called the coefficients of the equation ax+by = r. The number r is called the constant of the equation ax + by = r.
Note: Linear equations in two variables have many methods to solve the equations. Such as
1. Graphical method
2. Elimination method
3. Substitution method
4. Cross multiplication method
Complete step-by-step answer:
980 liters of milk each week at Rs 14/liter and 1220 liters of milk each week at Rs 16/liter. The relationship between selling price and demand is linear.
We have to find how many liters he could sell weekly at Rs 17/liter.
Let find the linear relations
Let us assume that the selling price/liter is along X-axis and demand along Y-axis.
Therefore, points (14, 980) and (16, 1220) satisfy the linear relationship between selling price and demand.
Hence, line passing through these points is:
\[
\Rightarrow y - 980 = \dfrac{{1220 - 980}}{{16 - 14}}\left( {x - 14} \right) \\
\Rightarrow y - 980 = \dfrac{{240}}{2}\left( {x - 14} \right) \\
\Rightarrow y - 980 = 120\left( {x - 14} \right) \\
\Rightarrow y = 120\left( {x - 14} \right) + 980 \\
\]
Put x = 17 in above equation, we get:
$
y = 120\left( {17 - 14} \right) + 980 \\
y = 120 \times 3 + 980 \\
y = 1340 \\
$
Hence, the owner of the milk store can sell 1340 liters of milk weekly at Rs 17/liter
Additional information: Linear equations in two variables If a, b, and r are real numbers (and if a and b are not both equal to 0) then ax + by = r is called a linear equation in two variables. (The “two variables” are the x and the y.) The numbers a and b are called the coefficients of the equation ax+by = r. The number r is called the constant of the equation ax + by = r.
Note: Linear equations in two variables have many methods to solve the equations. Such as
1. Graphical method
2. Elimination method
3. Substitution method
4. Cross multiplication method
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If x be real then the maximum value of 5 + 4x 4x2 will class 10 maths JEE_Main
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
What happens when dilute hydrochloric acid is added class 10 chemistry JEE_Main
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE