The pair of metal ions that can give a spin only magnetic moment of 3.9 BM for the complex $\left[ {{\text{M}}{{\left( {{{\text{H}}_{\text{2}}}{\text{O}}} \right)}_{\text{6}}}} \right]{\text{C}}{{\text{l}}_{\text{2}}}$, is:
(A)${\text{C}}{{\text{r}}^{{\text{2 + }}}}$and ${\text{M}}{{\text{n}}^{2 + }}$
(B)${{\text{V}}^{2 + }}$and ${\text{C}}{{\text{o}}^{2 + }}$
(C)${{\text{V}}^{2 + }}$and ${\text{F}}{{\text{e}}^{2 + }}$
(D)${\text{C}}{{\text{o}}^{2 + }}$and ${\text{F}}{{\text{e}}^{2 + }}$
Answer
Verified
448.5k+ views
Hint: The formula for calculating spin only magnetic moment of coordination compounds is $\mu = \sqrt {n\left( {n + 2} \right)} $ BM. The value 3.9BM is obtained by complexes with a number of unpaired electrons are 3.
Complete Step-by-step solution:
Magnetic moment is the measure of magnetic property of compounds. To know the magnetic moment value let us use the formula for spin only magnetic moment. Let us find out which metal ions pair has three unpaired electrons each. The number of unpaired electrons in a complex depends on the ligands (both outer and inner sphere). The formula for magnetic moment is \[\mu = \sqrt {n\left( {n + 2} \right)} \] where, $\mu $ -Magnetic moment, n- Number of unpaired electrons in the valence shell of the metal ion
The option (A) chromium (II) ion (Z=22) has 4 unpaired electrons as two electrons are removed from neutral electronic configuration $\left[ {{\text{Ar}}} \right]{\text{3}}{{\text{d}}^5}{\text{4}}{{\text{s}}^1}$ and manganese (II) ion (Z= 23) gets 5unpaired electrons upon removal of two electrons from z=25. In option (B) Vanadium (II) ion (Z=21) has three unpaired d-electrons and Cobalt (II) has 7 electrons in the d-orbital in which three electrons remain unpaired. In the option Vanadium (II) ion has three electrons and Iron (II) gets four unpaired d-electrons upon removal of two s-electrons. In option (D) cobalt (II) has 7 electrons in the d-orbital where four are paired ones and three are unpaired.
So, the answer for the above question is option (B) ${{\text{V}}^{{\text{2 + }}}}$ and ${\text{C}}{{\text{o}}^{2 + }}$
Note: As the ligands are both weak field ligands they are high spin and pairing of electrons does not take place. The electrons are filled in d-orbital with one electron each in ${{\text{t}}_{{\text{2g,}}}}{{\text{e}}_{\text{g}}}$ orbitals and then the pairing of the extra electrons takes place.
Complete Step-by-step solution:
Magnetic moment is the measure of magnetic property of compounds. To know the magnetic moment value let us use the formula for spin only magnetic moment. Let us find out which metal ions pair has three unpaired electrons each. The number of unpaired electrons in a complex depends on the ligands (both outer and inner sphere). The formula for magnetic moment is \[\mu = \sqrt {n\left( {n + 2} \right)} \] where, $\mu $ -Magnetic moment, n- Number of unpaired electrons in the valence shell of the metal ion
The option (A) chromium (II) ion (Z=22) has 4 unpaired electrons as two electrons are removed from neutral electronic configuration $\left[ {{\text{Ar}}} \right]{\text{3}}{{\text{d}}^5}{\text{4}}{{\text{s}}^1}$ and manganese (II) ion (Z= 23) gets 5unpaired electrons upon removal of two electrons from z=25. In option (B) Vanadium (II) ion (Z=21) has three unpaired d-electrons and Cobalt (II) has 7 electrons in the d-orbital in which three electrons remain unpaired. In the option Vanadium (II) ion has three electrons and Iron (II) gets four unpaired d-electrons upon removal of two s-electrons. In option (D) cobalt (II) has 7 electrons in the d-orbital where four are paired ones and three are unpaired.
So, the answer for the above question is option (B) ${{\text{V}}^{{\text{2 + }}}}$ and ${\text{C}}{{\text{o}}^{2 + }}$
Note: As the ligands are both weak field ligands they are high spin and pairing of electrons does not take place. The electrons are filled in d-orbital with one electron each in ${{\text{t}}_{{\text{2g,}}}}{{\text{e}}_{\text{g}}}$ orbitals and then the pairing of the extra electrons takes place.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success
Master Class 12 English: Engaging Questions & Answers for Success
Master Class 12 Social Science: Engaging Questions & Answers for Success
Master Class 12 Chemistry: Engaging Questions & Answers for Success
Class 12 Question and Answer - Your Ultimate Solutions Guide
Master Class 12 Economics: Engaging Questions & Answers for Success
Trending doubts
Which are the Top 10 Largest Countries of the World?
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
What are the major means of transport Explain each class 12 social science CBSE
What is the Full Form of PVC, PET, HDPE, LDPE, PP and PS ?
What is a transformer Explain the principle construction class 12 physics CBSE
Explain sex determination in humans with the help of class 12 biology CBSE