
The pedal equation of the circle ${{x}^{2}}+{{y}^{2}}=4$ with regard to the point (2,0) is
[a] ${{r}^{2}}=4$
[b] $4p={{r}^{2}}$
[c] ${{p}^{2}}=4r$
[d] $p=4{{r}^{2}}$
Answer
492.6k+ views
Hint: Use the property that the tangent of a circle and the radius are perpendicular to each other at the point of contact. Use the property that angle in a semicircle is a right angle. Hence prove that the angles $\angle \text{ABD}$ and $\angle \text{BCA}$ are equal. Use trigonometry to get a relation between AB, AD and BC. Substitute AD = p, AB = r and BC = 4 to get the required pedal equation.
Complete step-by-step answer:
Pedal equation: Definition: Pedal equation of a curve C and given fixed point O is the relation between r and p, where r is the distance if point O to a point on the curve C and p is the perpendicular distance of O from the tangent line drawn at that point. The point O is called the pedal point and the values r and p are known as the pedal coordinates of the curve C w.r.t the pedal point.
Here we have, the pedal point is A (2,0), and B is any point on the locus. BD is the tangent at point B, and AD is the perpendicular from A on BD. C is the diametrically opposite point of B.
Hence, we have AD = p and AB = r.
Since BC is a diameter, we have $\angle \text{BAC=90}{}^\circ $
Let $\angle \text{BCA=}\theta $.
Hence we have
$\angle \text{CBA=90}{}^\circ \text{-}\theta $
Since BD is a tangent and BC is a diameter, we have $\angle \text{CBD=90}{}^\circ $
Hence, we have $\angle \text{ABD=}\theta $
In triangle ABD, we have $\sin \theta =\dfrac{\text{AD}}{\text{AB}}\text{ (i)}$
In triangle ABC, we have $\sin \theta =\dfrac{\text{AB}}{\text{BC}}\text{ (ii)}$
From (i) and (ii), we get
$\dfrac{\text{AD}}{\text{AB}}=\dfrac{\text{AB}}{\text{BC}}$
Since for circle with equation ${{x}^{2}}+{{y}^{2}}={{a}^{2}}$ radius = a, we have BC = 4.
Put AD = p, AB = r and BC = 4, we get
$\begin{align}
& \dfrac{p}{r}=\dfrac{r}{4} \\
& \Rightarrow 4p={{r}^{2}} \\
\end{align}$
which is the required pedal equation of the circle.
Hence option [b] is correct.
Note: In the pedal equation, we denote distance of any point on the locus from the pedal point by r and the distance of the pedal point from the tangent at the point on the locus by p. We then find the relation between p and r. This relation is called the pedal equation of the curve.
Alternative Solution:
Pedal equation of a circle with respect to any point on the circumference of the circle is given by $pd={{r}^{2}}$, where d is the diameter of the circle.
Here d = 4.
Hence the pedal equation is $4p={{r}^{2}}$ .
Complete step-by-step answer:

Pedal equation: Definition: Pedal equation of a curve C and given fixed point O is the relation between r and p, where r is the distance if point O to a point on the curve C and p is the perpendicular distance of O from the tangent line drawn at that point. The point O is called the pedal point and the values r and p are known as the pedal coordinates of the curve C w.r.t the pedal point.
Here we have, the pedal point is A (2,0), and B is any point on the locus. BD is the tangent at point B, and AD is the perpendicular from A on BD. C is the diametrically opposite point of B.
Hence, we have AD = p and AB = r.
Since BC is a diameter, we have $\angle \text{BAC=90}{}^\circ $
Let $\angle \text{BCA=}\theta $.
Hence we have
$\angle \text{CBA=90}{}^\circ \text{-}\theta $
Since BD is a tangent and BC is a diameter, we have $\angle \text{CBD=90}{}^\circ $
Hence, we have $\angle \text{ABD=}\theta $
In triangle ABD, we have $\sin \theta =\dfrac{\text{AD}}{\text{AB}}\text{ (i)}$
In triangle ABC, we have $\sin \theta =\dfrac{\text{AB}}{\text{BC}}\text{ (ii)}$
From (i) and (ii), we get
$\dfrac{\text{AD}}{\text{AB}}=\dfrac{\text{AB}}{\text{BC}}$
Since for circle with equation ${{x}^{2}}+{{y}^{2}}={{a}^{2}}$ radius = a, we have BC = 4.
Put AD = p, AB = r and BC = 4, we get
$\begin{align}
& \dfrac{p}{r}=\dfrac{r}{4} \\
& \Rightarrow 4p={{r}^{2}} \\
\end{align}$
which is the required pedal equation of the circle.
Hence option [b] is correct.
Note: In the pedal equation, we denote distance of any point on the locus from the pedal point by r and the distance of the pedal point from the tangent at the point on the locus by p. We then find the relation between p and r. This relation is called the pedal equation of the curve.
Alternative Solution:
Pedal equation of a circle with respect to any point on the circumference of the circle is given by $pd={{r}^{2}}$, where d is the diameter of the circle.
Here d = 4.
Hence the pedal equation is $4p={{r}^{2}}$ .
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Trending doubts
Give simple chemical tests to distinguish between the class 12 chemistry CBSE

How was the Civil Disobedience Movement different from class 12 social science CBSE

India is the secondlargest producer of AJute Bcotton class 12 biology CBSE

Define peptide linkage class 12 chemistry CBSE

How is democracy better than other forms of government class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE
