The perimeter of a sector is constant. If its area is to be maximum, then the sectorial angle is
A. $\dfrac{\pi}{2}$
B.$ \dfrac{\pi}{4} $
C.$4^c$
D.$2^c$
Answer
Verified
466.5k+ views
Hint: Firstly, we will let the radius be $r$ and sectorial angle be $\theta $ . Given that, the perimeter of the sector is constant. Substitute the value of radius in the formula of area of the sector. Then, differentiate both sides with respect to $\theta $ . As the area is maximum so, we will put the differential value equal to zero and obtain the value of $\theta $. If the differentiated value is negative, then the area is maximum and the value of $\theta $ is correct otherwise not.
Complete step-by-step answer:
Let that the radius of the circle is $r$ and the sectorial angle be $\theta $ .
We draw a figure,
Now, the perimeter of the sector is given by $2r + r\theta $ , according to the question, the perimeter of the sector is constant.
$2r + r\theta = k$
We will evaluate the value of $r$ ,
$ \Rightarrow r = \dfrac{k}{{2 + \theta }}$
The area of sector is denoted by A and given by
$A = \dfrac{1}{2}{r^2}\theta $
Now, substitute the value of radius of the above formula of area,
We get,
$A = \dfrac{{{k^2}}}{2} \times \dfrac{\theta }{{{{(\theta + 2)}^2}}}$
We will differentiate the area on both side with respect to $\theta $ using the formula,
$\dfrac{{d\left( {\dfrac{u}{v}} \right)}}{{dx}} = \dfrac{{v\left( {\dfrac{{du}}{{dx}}} \right) - u\left( {\dfrac{{dv}}{{dx}}} \right)}}{{{v^2}}}$
We get,
$\
\Rightarrow \dfrac{{dA}}{{d\theta }} = \dfrac{{{k^2}}}{2}\left\{ {\dfrac{{{{(\theta + 2)}^2} - 2\theta (\theta + 2)}}{{{{(\theta + 2)}^4}}}} \right\} \\
\Rightarrow \dfrac{{dA}}{{d\theta }} = \dfrac{{{k^2}}}{2}\left( {\dfrac{{(\theta + 2)(\theta + 2 - 2\theta )}}{{{{(\theta + 2)}^4}}}} \right) \\
\Rightarrow \dfrac{{dA}}{{d\theta }} = \dfrac{{{k^2}}}{2}\left( {\dfrac{{2 - \theta }}{{{{(\theta + 2)}^3}}}} \right)...........eq(1) \\
\ $
The area has to be maximum so, we will put the value of $\dfrac{{dA}}{{d\theta }}$ written as equation (1) equal to zero.
We get,
$\
\Rightarrow \dfrac{{dA}}{{d\theta }} = 0 \\
\Rightarrow \dfrac{{{k^2}}}{2}\left( {\dfrac{{2 - \theta }}{{{{(\theta + 2)}^3}}}} \right) = 0 \\
\Rightarrow 2 - \theta = 0 \\
\Rightarrow \theta = 2 \\
\ $
Again differentiate the equation (1) with respect to $\theta $ , we get,
$\
\Rightarrow \dfrac{{{d^2}A}}{{d{\theta ^2}}} = \dfrac{{{k^2}}}{2}\left[ {\dfrac{{2( - 3)}}{{{{(\theta - 2)}^4}}} - \dfrac{{{{(\theta + 2)}^3} \times 1 - \theta \times 3{{(\theta + 2)}^2}}}{{{{\left[ {{{\left( {\theta + 2} \right)}^3}} \right]}^2}}}} \right] \\
\Rightarrow \dfrac{{{d^2}A}}{{d{\theta ^2}}} = \dfrac{{{k^2}}}{2}\left[ {\dfrac{{ - 6}}{{{{(\theta + 2)}^4}}} - \dfrac{{\theta + 2 - 3\theta }}{{{{(\theta + 2)}^4}}}} \right] \\
\Rightarrow \dfrac{{{d^2}A}}{{d{\theta ^2}}} = \dfrac{{ - {k^2}}}{2}\left[ {\dfrac{6}{{{{(\theta + 2)}^4}}} + \dfrac{{2 - \theta }}{{{{\left( {\theta + 2} \right)}^4}}}} \right] \\
\ $
Now, we will substitute the value of $\theta = 2$
We have,
$\
\Rightarrow \dfrac{{{d^2}A}}{{d{\theta ^2}}} = \dfrac{{ - {k^2}}}{2}\left[ {\dfrac{6}{{{{(2 + 2)}^4}}} + \dfrac{{2 - 2}}{{{{(2 + 2)}^4}}}} \right] \\
\Rightarrow \dfrac{{{d^2}A}}{{d{\theta ^2}}} = \dfrac{{ - {k^2}}}{2}\left[ {\dfrac{6}{{{{(4)}^4}}} + 0} \right] \\
\Rightarrow \dfrac{{{d^2}A}}{{d{\theta ^2}}} = \dfrac{{ - 3{k^2}}}{{256}} \\
\Rightarrow \dfrac{{{d^2}A}}{{d{\theta ^2}}} \prec 0 \\
\ $
We can conclude that the area is maximum as the double derivative of the area is negative at $\theta = {2^C}$ .
Hence, option (D) is correct.
Note: When we remember that the area is maximum when the double derivative is negative and minimum when the double derivative is positive.
We need to find the value of $\theta $ to determine that the double derivative is negative or positive. we have to remember the formula of area and the perimeter of the sector.
Complete step-by-step answer:
Let that the radius of the circle is $r$ and the sectorial angle be $\theta $ .
We draw a figure,
Now, the perimeter of the sector is given by $2r + r\theta $ , according to the question, the perimeter of the sector is constant.
$2r + r\theta = k$
We will evaluate the value of $r$ ,
$ \Rightarrow r = \dfrac{k}{{2 + \theta }}$
The area of sector is denoted by A and given by
$A = \dfrac{1}{2}{r^2}\theta $
Now, substitute the value of radius of the above formula of area,
We get,
$A = \dfrac{{{k^2}}}{2} \times \dfrac{\theta }{{{{(\theta + 2)}^2}}}$
We will differentiate the area on both side with respect to $\theta $ using the formula,
$\dfrac{{d\left( {\dfrac{u}{v}} \right)}}{{dx}} = \dfrac{{v\left( {\dfrac{{du}}{{dx}}} \right) - u\left( {\dfrac{{dv}}{{dx}}} \right)}}{{{v^2}}}$
We get,
$\
\Rightarrow \dfrac{{dA}}{{d\theta }} = \dfrac{{{k^2}}}{2}\left\{ {\dfrac{{{{(\theta + 2)}^2} - 2\theta (\theta + 2)}}{{{{(\theta + 2)}^4}}}} \right\} \\
\Rightarrow \dfrac{{dA}}{{d\theta }} = \dfrac{{{k^2}}}{2}\left( {\dfrac{{(\theta + 2)(\theta + 2 - 2\theta )}}{{{{(\theta + 2)}^4}}}} \right) \\
\Rightarrow \dfrac{{dA}}{{d\theta }} = \dfrac{{{k^2}}}{2}\left( {\dfrac{{2 - \theta }}{{{{(\theta + 2)}^3}}}} \right)...........eq(1) \\
\ $
The area has to be maximum so, we will put the value of $\dfrac{{dA}}{{d\theta }}$ written as equation (1) equal to zero.
We get,
$\
\Rightarrow \dfrac{{dA}}{{d\theta }} = 0 \\
\Rightarrow \dfrac{{{k^2}}}{2}\left( {\dfrac{{2 - \theta }}{{{{(\theta + 2)}^3}}}} \right) = 0 \\
\Rightarrow 2 - \theta = 0 \\
\Rightarrow \theta = 2 \\
\ $
Again differentiate the equation (1) with respect to $\theta $ , we get,
$\
\Rightarrow \dfrac{{{d^2}A}}{{d{\theta ^2}}} = \dfrac{{{k^2}}}{2}\left[ {\dfrac{{2( - 3)}}{{{{(\theta - 2)}^4}}} - \dfrac{{{{(\theta + 2)}^3} \times 1 - \theta \times 3{{(\theta + 2)}^2}}}{{{{\left[ {{{\left( {\theta + 2} \right)}^3}} \right]}^2}}}} \right] \\
\Rightarrow \dfrac{{{d^2}A}}{{d{\theta ^2}}} = \dfrac{{{k^2}}}{2}\left[ {\dfrac{{ - 6}}{{{{(\theta + 2)}^4}}} - \dfrac{{\theta + 2 - 3\theta }}{{{{(\theta + 2)}^4}}}} \right] \\
\Rightarrow \dfrac{{{d^2}A}}{{d{\theta ^2}}} = \dfrac{{ - {k^2}}}{2}\left[ {\dfrac{6}{{{{(\theta + 2)}^4}}} + \dfrac{{2 - \theta }}{{{{\left( {\theta + 2} \right)}^4}}}} \right] \\
\ $
Now, we will substitute the value of $\theta = 2$
We have,
$\
\Rightarrow \dfrac{{{d^2}A}}{{d{\theta ^2}}} = \dfrac{{ - {k^2}}}{2}\left[ {\dfrac{6}{{{{(2 + 2)}^4}}} + \dfrac{{2 - 2}}{{{{(2 + 2)}^4}}}} \right] \\
\Rightarrow \dfrac{{{d^2}A}}{{d{\theta ^2}}} = \dfrac{{ - {k^2}}}{2}\left[ {\dfrac{6}{{{{(4)}^4}}} + 0} \right] \\
\Rightarrow \dfrac{{{d^2}A}}{{d{\theta ^2}}} = \dfrac{{ - 3{k^2}}}{{256}} \\
\Rightarrow \dfrac{{{d^2}A}}{{d{\theta ^2}}} \prec 0 \\
\ $
We can conclude that the area is maximum as the double derivative of the area is negative at $\theta = {2^C}$ .
Hence, option (D) is correct.
Note: When we remember that the area is maximum when the double derivative is negative and minimum when the double derivative is positive.
We need to find the value of $\theta $ to determine that the double derivative is negative or positive. we have to remember the formula of area and the perimeter of the sector.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success
Master Class 12 English: Engaging Questions & Answers for Success
Master Class 12 Economics: Engaging Questions & Answers for Success
Master Class 12 Chemistry: Engaging Questions & Answers for Success
Master Class 12 Social Science: Engaging Questions & Answers for Success
Class 12 Question and Answer - Your Ultimate Solutions Guide
Trending doubts
What is the definite integral of zero a constant b class 12 maths CBSE
What are the major means of transport Explain each class 12 social science CBSE
Give 10 examples of unisexual and bisexual flowers
What is the Full Form of PVC, PET, HDPE, LDPE, PP and PS ?
Draw a labelled sketch of the human eye class 12 physics CBSE
Differentiate between internal fertilization and external class 12 biology CBSE