
The periodic time of a simple pendulum of length 1 m and amplitude 2 cm is 5 seconds. If the amplitude is made 4 cm, its periodic time in seconds will be
\[\begin{align}
& \text{A}.\text{ }2.5 \\
& \text{B}.\text{ }5 \\
& \text{C}.10 \\
& \text{D}.\text{ }5\sqrt{2} \\
\end{align}\]
Answer
492.9k+ views
Hint: The time period of a simple pendulum is the time taken by a pendulum to complete one full oscillation. The maximum displacement of the bob in the pendulum is the amplitude of that pendulum.
Formula used:
Time period of a simple pendulum,
$T=2\pi \sqrt{\dfrac{l}{g}}$ .
Complete step by step answer:
In the question we are given the length of the pendulum,$l$ = 1 m
Amplitude of the pendulum, A = 2cm
And the time period of this pendulum, T = 5 seconds.
We have to find the time period of this pendulum, when its amplitude becomes 4 cm.
We know, time period of a simple pendulum is given by the equation,
$T=2\pi \sqrt{\dfrac{l}{g}}$ , where ‘$l$’ is the length of the pendulum and ‘g’ is acceleration due to gravity.
From this equation, it is clear that the time period of a simple pendulum does not depend on its amplitude.
In the question, we change the amplitude of the pendulum from 2 cm to 4 cm. Length of the pendulum remains the same and acceleration due to gravity; ‘g’ is a constant.
Therefore, the time period of the pendulum when its amplitude = 4cm, length ‘$l$’=1 m will be 5 seconds.
So, the correct answer is “Option B”.
Note:
Time period of simple pendulum
For a simple pendulum, we know its angular frequency $\omega $ is given by
$\omega =\sqrt{\dfrac{g}{l}}$ , where ‘$l$’ is the length of the pendulum and ‘g’ is acceleration due to gravity.
Time period of an oscillation is generally expressed as,
$T=\dfrac{2\pi }{\omega }$ , where ‘T’ is the time period and ‘$\omega $’ is the angular frequency of the pendulum.
By substituting the value of angular frequency (ω) in the above equation, we get
$T=2\pi \sqrt{\dfrac{l}{g}}$
Therefore the time period of a pendulum is, $T=2\pi \sqrt{\dfrac{l}{g}}$
Formula used:
Time period of a simple pendulum,
$T=2\pi \sqrt{\dfrac{l}{g}}$ .
Complete step by step answer:
In the question we are given the length of the pendulum,$l$ = 1 m
Amplitude of the pendulum, A = 2cm
And the time period of this pendulum, T = 5 seconds.
We have to find the time period of this pendulum, when its amplitude becomes 4 cm.
We know, time period of a simple pendulum is given by the equation,
$T=2\pi \sqrt{\dfrac{l}{g}}$ , where ‘$l$’ is the length of the pendulum and ‘g’ is acceleration due to gravity.
From this equation, it is clear that the time period of a simple pendulum does not depend on its amplitude.
In the question, we change the amplitude of the pendulum from 2 cm to 4 cm. Length of the pendulum remains the same and acceleration due to gravity; ‘g’ is a constant.
Therefore, the time period of the pendulum when its amplitude = 4cm, length ‘$l$’=1 m will be 5 seconds.
So, the correct answer is “Option B”.
Note:
Time period of simple pendulum
For a simple pendulum, we know its angular frequency $\omega $ is given by
$\omega =\sqrt{\dfrac{g}{l}}$ , where ‘$l$’ is the length of the pendulum and ‘g’ is acceleration due to gravity.
Time period of an oscillation is generally expressed as,
$T=\dfrac{2\pi }{\omega }$ , where ‘T’ is the time period and ‘$\omega $’ is the angular frequency of the pendulum.
By substituting the value of angular frequency (ω) in the above equation, we get
$T=2\pi \sqrt{\dfrac{l}{g}}$
Therefore the time period of a pendulum is, $T=2\pi \sqrt{\dfrac{l}{g}}$
Recently Updated Pages
The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE

Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE

With reference to graphite and diamond which of the class 11 chemistry CBSE

A certain household has consumed 250 units of energy class 11 physics CBSE

The lightest metal known is A beryllium B lithium C class 11 chemistry CBSE

What is the formula mass of the iodine molecule class 11 chemistry CBSE

Trending doubts
State the laws of reflection of light

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

How do I convert ms to kmh Give an example class 11 physics CBSE

Describe the effects of the Second World War class 11 social science CBSE

Which of the following methods is suitable for preventing class 11 chemistry CBSE
