Answer
Verified
410.7k+ views
Hint: First of all we will see the equation of displacement of a particle executing Simple Harmonic Motion. Then, on differentiating that equation with respect to time, we get the equation of velocity. On comparing the phase constant for both the terms, that is, displacement and velocity we will be able to determine the phase difference between them at any given time instant.
Complete step-by-step answer:
Let the displacement of the particle from the point about which it is executing simple harmonic motion be given by the term $X$ .
Now, if the particle has an initial phase of $\theta $ and angular velocity $\omega $, then the displacement equation of the particle could be written as follows:
$\Rightarrow X=A\sin (\omega t+\theta )$ [Let this expression be equation number (1)]
Where, A is the maximum displacement about the point of execution of simple harmonic motion. This maximum displacement is termed as Amplitude.
Now, we know the differential of displacement of a particle with respect to time gives us the particle’s velocity. Thus, on differentiating equation number (1) with respect to time, we get:
$\begin{align}
& \Rightarrow \dfrac{dX}{dt}=\dfrac{d[A\sin (\omega t+\theta )]}{dt} \\
& \Rightarrow v=A\omega \cos (\omega t+\theta ) \\
\end{align}$
Here, we can write the term obtained for velocity as:
$\Rightarrow A\omega \cos (\omega t+\theta )=-A\omega \sin (\omega t+\theta +\dfrac{\pi }{2})$ [Using: $\cos \left( \dfrac{\pi }{2}+x \right)=-\sin x$ ]
$\therefore v=-A\omega \sin (\omega t+\theta +\dfrac{\pi }{2})$ [Let this expression be equation number (2)]
On comparing equation number (1) and (2), we get:
The difference in the phase of velocity and displacement as $\dfrac{\pi }{2}$ .
Therefore, for a particle executing Simple Harmonic Motion, the phase difference between velocity and displacement is equal to $\dfrac{\pi }{2}$ radian.
So, the correct answer is “Option A”.
Note: We see that the difference in phase of velocity and displacement is independent of any parameter. That is, at any given instant this difference remains the same. If we differentiate the velocity equation again, we will see that the phase difference between displacement and acceleration is $\pi $ radian.
Complete step-by-step answer:
Let the displacement of the particle from the point about which it is executing simple harmonic motion be given by the term $X$ .
Now, if the particle has an initial phase of $\theta $ and angular velocity $\omega $, then the displacement equation of the particle could be written as follows:
$\Rightarrow X=A\sin (\omega t+\theta )$ [Let this expression be equation number (1)]
Where, A is the maximum displacement about the point of execution of simple harmonic motion. This maximum displacement is termed as Amplitude.
Now, we know the differential of displacement of a particle with respect to time gives us the particle’s velocity. Thus, on differentiating equation number (1) with respect to time, we get:
$\begin{align}
& \Rightarrow \dfrac{dX}{dt}=\dfrac{d[A\sin (\omega t+\theta )]}{dt} \\
& \Rightarrow v=A\omega \cos (\omega t+\theta ) \\
\end{align}$
Here, we can write the term obtained for velocity as:
$\Rightarrow A\omega \cos (\omega t+\theta )=-A\omega \sin (\omega t+\theta +\dfrac{\pi }{2})$ [Using: $\cos \left( \dfrac{\pi }{2}+x \right)=-\sin x$ ]
$\therefore v=-A\omega \sin (\omega t+\theta +\dfrac{\pi }{2})$ [Let this expression be equation number (2)]
On comparing equation number (1) and (2), we get:
The difference in the phase of velocity and displacement as $\dfrac{\pi }{2}$ .
Therefore, for a particle executing Simple Harmonic Motion, the phase difference between velocity and displacement is equal to $\dfrac{\pi }{2}$ radian.
So, the correct answer is “Option A”.
Note: We see that the difference in phase of velocity and displacement is independent of any parameter. That is, at any given instant this difference remains the same. If we differentiate the velocity equation again, we will see that the phase difference between displacement and acceleration is $\pi $ radian.
Recently Updated Pages
A particle is undergoing a horizontal circle of radius class 11 physics CBSE
A particle is thrown vertically upwards with a velocity class 11 physics CBSE
A particle is rotated in a vertical circle by connecting class 11 physics CBSE
A particle is projected with a velocity v such that class 11 physics CBSE
A particle is projected with a velocity u making an class 11 physics CBSE
A particle is projected vertically upwards and it reaches class 11 physics CBSE
Trending doubts
Find the value of the expression given below sin 30circ class 11 maths CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
On which part of the tongue most of the taste gets class 11 biology CBSE
State and prove Bernoullis theorem class 11 physics CBSE
Who is the leader of the Lok Sabha A Chief Minister class 11 social science CBSE