Answer
Verified
449.4k+ views
Hint The SHM motion of the piston can be represented using a sinusoidal function. The speed of the piston can be calculated using the first time derivative of its position.
Complete step by step answer
We’ve been given that the piston in the cylinder of a locomotive is executing simple harmonic motion. Since it is executing simple harmonic motion, we can represent it using a sinusoidal function as follows:
$\Rightarrow x = A\sin (\omega t + \phi )$
Where $x$ is the position of the locomotive with respect to its origin, $\omega $ is the angular frequency, $t$ is the time and $\phi $ is the phase of the locomotive i.e. its relative position at the time $t = 0$ and $A$ is the amplitude of the piston
The velocity of the piston can then be calculated as:
$\Rightarrow v = \dfrac{{dx}}{{dt}}$
Substituting $x = A\sin (\omega t + \phi )$ in the above equation, we get
$\Rightarrow v = \dfrac{{d(A\sin (\omega t + \phi ))}}{{dt}}$
Taking the amplitude out of the derivative since it is a constant, we get
$\Rightarrow v = A\dfrac{d}{{dt}}\sin (\omega t + \phi ))$
$\Rightarrow v = Aw\cos (wt + \phi )$
Now that we know the velocity of the piston as a function of time, let's find out the maximum velocity. So, in the function of the velocity above, it will achieve the maximum velocity when the cosine term has the maximum value. We know that the cosine function has a maximum value of 1. So, the maximum velocity of the piston will be
$\Rightarrow v = A\omega $
Substituting the value of $A = 1/2$
Which gives, $A = 0.5\,m$
and $\omega = 200\,rad/\min $ in equation (1), we get
$\Rightarrow v = 0.5 \times 200$ which is the maximum speed of the piston
$\Rightarrow v = 100\,{\text{m}}/\min $.
Note
The maximum speed of the piston only depends on the amplitude of the piston and its angular frequency but the speed of the piston is actually a function of time. The piston will have the maximum speed when it passes through its equilibrium position as at that position it will have zero potential energy and maximum kinetic energy and hence maximum velocity.
Complete step by step answer
We’ve been given that the piston in the cylinder of a locomotive is executing simple harmonic motion. Since it is executing simple harmonic motion, we can represent it using a sinusoidal function as follows:
$\Rightarrow x = A\sin (\omega t + \phi )$
Where $x$ is the position of the locomotive with respect to its origin, $\omega $ is the angular frequency, $t$ is the time and $\phi $ is the phase of the locomotive i.e. its relative position at the time $t = 0$ and $A$ is the amplitude of the piston
The velocity of the piston can then be calculated as:
$\Rightarrow v = \dfrac{{dx}}{{dt}}$
Substituting $x = A\sin (\omega t + \phi )$ in the above equation, we get
$\Rightarrow v = \dfrac{{d(A\sin (\omega t + \phi ))}}{{dt}}$
Taking the amplitude out of the derivative since it is a constant, we get
$\Rightarrow v = A\dfrac{d}{{dt}}\sin (\omega t + \phi ))$
$\Rightarrow v = Aw\cos (wt + \phi )$
Now that we know the velocity of the piston as a function of time, let's find out the maximum velocity. So, in the function of the velocity above, it will achieve the maximum velocity when the cosine term has the maximum value. We know that the cosine function has a maximum value of 1. So, the maximum velocity of the piston will be
$\Rightarrow v = A\omega $
Substituting the value of $A = 1/2$
Which gives, $A = 0.5\,m$
and $\omega = 200\,rad/\min $ in equation (1), we get
$\Rightarrow v = 0.5 \times 200$ which is the maximum speed of the piston
$\Rightarrow v = 100\,{\text{m}}/\min $.
Note
The maximum speed of the piston only depends on the amplitude of the piston and its angular frequency but the speed of the piston is actually a function of time. The piston will have the maximum speed when it passes through its equilibrium position as at that position it will have zero potential energy and maximum kinetic energy and hence maximum velocity.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
What is the meaning of celestial class 10 social science CBSE
What causes groundwater depletion How can it be re class 10 chemistry CBSE
Under which different types can the following changes class 10 physics CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE