Answer
Verified
379.8k+ views
Hint: We can use the ideal gas equation to solve this problem. The ideal gas equation can be rearranged to obtain the graph. We know that the log V vs log T graph will yield us a straight line. By using the straight-line equation, we can say that y=mx+c and thus the value of c will give us the value of the intercept.
Complete answer:
According to the ideal gas equation we can say that
\[ \Rightarrow PV = nRT\]
This means that the pressure, volume, Temperature and the universal gas constant R can be related by this formula.
According to the question, we are given 1 mole of the gas. This means that the value of n=1.
Thus the equation becomes:
\[ \Rightarrow PV = RT\]
Applying logarithm on both the sides we get,
\[ \Rightarrow \log P + \log V = \log R + \log T\]
\[ \Rightarrow \log V = \log R + \log T - \log P\]
By simplifying the logarithm we will obtain:
\[ \Rightarrow \log V = \log \dfrac{R}{P} + \log T\]
This is of the form y=mx+c
Here log V is in the y-axis and log T is in the x-axis. Thus we can say that the value of c will be \[\log \dfrac{R}{P}\] .
The graph of the equation will be given by:
Hence the correct answer is option D.
Note:
While doing the simplification of the log terms we are taking the log P term to the right-hand side instead of log V because the value of P is a constant and thus the value of intercept obtained can be a constant. It is mentioned in the question that the experiment is done under constant pressure. Thus we need the intercept term to be a constant value and hence use P in it.
Complete answer:
According to the ideal gas equation we can say that
\[ \Rightarrow PV = nRT\]
This means that the pressure, volume, Temperature and the universal gas constant R can be related by this formula.
According to the question, we are given 1 mole of the gas. This means that the value of n=1.
Thus the equation becomes:
\[ \Rightarrow PV = RT\]
Applying logarithm on both the sides we get,
\[ \Rightarrow \log P + \log V = \log R + \log T\]
\[ \Rightarrow \log V = \log R + \log T - \log P\]
By simplifying the logarithm we will obtain:
\[ \Rightarrow \log V = \log \dfrac{R}{P} + \log T\]
This is of the form y=mx+c
Here log V is in the y-axis and log T is in the x-axis. Thus we can say that the value of c will be \[\log \dfrac{R}{P}\] .
The graph of the equation will be given by:
Hence the correct answer is option D.
Note:
While doing the simplification of the log terms we are taking the log P term to the right-hand side instead of log V because the value of P is a constant and thus the value of intercept obtained can be a constant. It is mentioned in the question that the experiment is done under constant pressure. Thus we need the intercept term to be a constant value and hence use P in it.
Recently Updated Pages
There are two sample of HCI having molarity 1M and class 11 chemistry JEE_Main
For the reaction I + ClO3 + H2SO4 to Cl + HSO4 + I2 class 11 chemistry JEE_Main
What happens to the gravitational force between two class 11 physics NEET
In the reaction 2NH4 + + 6NO3 aq + 4H + aq to 6NO2g class 11 chemistry JEE_Main
A weightless rod is acted upon by upward parallel forces class 11 phy sec 1 JEE_Main
From a uniform circular disc of radius R and mass 9 class 11 physics JEE_Main
Trending doubts
Which is the longest day and shortest night in the class 11 sst CBSE
Who was the Governor general of India at the time of class 11 social science CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
In a democracy the final decisionmaking power rests class 11 social science CBSE