Answer
Verified
441.3k+ views
Hint: According to the question we have to find the values of k when point A divides the join of P(-5,1) and Q(3,5) in the ratio k:1 and the area of $\Delta ABC$ where B(1,5), C(7,-2) is 2 square units. So, first of all we have to find the point A of $\Delta ABC$ with the help of the passage which is the join of P(-5,1) and Q(3,5) in the ratio k:1.
So, first of all we have to use the formula to find the point A of $\Delta ABC$ which is mentioned below.
Formula used: The coordinates of A in the figure given below when point A divides the line joining P and Q in the ratio m:n
The coordinates of A = $\left( {\dfrac{{mc + na}}{{m + n}},\dfrac{{md + nb}}{{m + n}}} \right).......................(A)$
Now, we have to using the formula of triangle which is passing through the points $\left( {a,b} \right),\left( {c,d} \right)$and $\left( {e,f} \right)$that is mentioned below:
Formula used:
Area of triangle which is passing through the points $\left( {a,b} \right),\left( {c,d} \right)$and $\left( {e,f} \right)$$ = \dfrac{1}{2}\left| {a\left( {d - f} \right) + c\left( {f - b} \right) + e\left( {b - d} \right)} \right|...............................(B)$
According to the question, we have to make the formula (B) equals to 2 then find the desired values of k.
Complete answer:
Step 1: As given in the question that The point A divides the join of P(-5,1) and Q(3,5) in the ratio k:1
So, first of all we have to find the coordinates of A with the help of the formula (A) as mentioned in the solution hint.
The coordinates of A = $\left( {\dfrac{{3k + 1\left( { - 5} \right)}}{{k + 1}},\dfrac{{5k + 1}}{{k + 1}}} \right)$
$ \Rightarrow $$\left( {\dfrac{{3k - 5}}{{k + 1}},\dfrac{{5k + 1}}{{k + 1}}} \right)$
Step 2: As given in the question, the area of $\Delta ABC$where B(1,5), C(7,-2) is 2 square units.
Now, we have to using the formula (B) as mentioned in the solution hint for point A $\left( {\dfrac{{3k - 5}}{{k + 1}},\dfrac{{5k + 1}}{{k + 1}}} \right)$, point B(1,5) and point C(7,-2).
Area of triangle $\Delta ABC$$ = \dfrac{1}{2}\left| {\left( {\dfrac{{3k - 5}}{{k + 1}}} \right)\left( {5 - \left( { - 2} \right)} \right) + 1\left( { - 2 - \left( {\dfrac{{5k + 1}}{{k + 1}}} \right)} \right) + 7\left( {\dfrac{{5k + 1}}{{k + 1}} - 5} \right)} \right|$
$ \Rightarrow 2$$ = \dfrac{1}{2}\left| {\left( {\dfrac{{3k - 5}}{{k + 1}}} \right)\left( {5 + 2} \right) + 1\left( { - 2 - \left( {\dfrac{{5k + 1}}{{k + 1}}} \right)} \right) + 7\left( {\dfrac{{5k + 1}}{{k + 1}} - 5} \right)} \right|$
Step 3: Now, we have to simplify the expression obtained in the solution step 2.
$ \Rightarrow 2$$ = \dfrac{1}{2}\left| {\left( {\dfrac{{3k - 5}}{{k + 1}}} \right).7 + 1\left( {\dfrac{{ - 2(k + 1) - 5k - 1}}{{k + 1}}} \right) + 7\left( {\dfrac{{5k + 1 - 5(k + 1)}}{{k + 1}}} \right)} \right|$
$ \Rightarrow 2$$ = \dfrac{1}{2}\left| {\left( {\dfrac{{21k - 35}}{{k + 1}}} \right) + \left( {\dfrac{{ - 2k - 2 - 5k - 1}}{{k + 1}}} \right) + 7\left( {\dfrac{{5k + 1 - 5k - 5}}{{k + 1}}} \right)} \right|$
$ \Rightarrow 2$$ = \dfrac{1}{2}\left| {\left( {\dfrac{{21k - 35}}{{k + 1}}} \right) + \left( {\dfrac{{ - 2k - 2 - 5k - 1}}{{k + 1}}} \right) + \left( {\dfrac{{ - 28}}{{k + 1}}} \right)} \right|$
Step 4: now, we have to simplify the expression obtained in the solution step 3 by taking the L.C.M of fractions.
$ \Rightarrow 2$$ = \dfrac{1}{2}\left| {\dfrac{{21k - 35 - 7k - 3 - 28}}{{k + 1}}} \right|$
$ \Rightarrow 4$$ = \left| {\dfrac{{14k - 66}}{{k + 1}}} \right|....................(1)$
Step 5 : Now, we know that $\left| x \right| = x, - x$. So, we use this rule in the expression (1) of the solution step 4
$ \Rightarrow 4$$ = \dfrac{{14k - 66}}{{k + 1}}$
$
\Rightarrow 4(k + 1) = 14k - 66 \\
\Rightarrow 4k + 4 = 14k - 66 \\
\Rightarrow 4 + 66 = 14k - 4k \\
\Rightarrow 70 = 10k \\
\Rightarrow 7 = k \\
$
Now, taking the negative sign of $\left| {\dfrac{{14k - 66}}{{k + 1}}} \right|$which is$ - \left( {\dfrac{{14k - 66}}{{k + 1}}} \right)$
$ \Rightarrow 4$$ = - \left( {\dfrac{{14k - 66}}{{k + 1}}} \right)$
$
\Rightarrow 4(k + 1) = - 14k + 66 \\
\Rightarrow 4k + 4 = - 14k + 66 \\
\Rightarrow 4k + 14k = 66 - 4 \\
\Rightarrow 18k = 62k \\
\Rightarrow k = \dfrac{{62}}{{18}} \\
\Rightarrow k = \dfrac{{31}}{9} \\
$
Hence, we have to find the value of k that is $7,\dfrac{{31}}{9}$. Therefore option (A) is correct.
Note:
It is necessary that we have to determine the points which divide the given line with the help of the help of the section formula for internal division coordinates.
It is necessary that we have to use all the points which are given and obtained point A to determine the value of k with the help of the formula to find the area of the triangle.
So, first of all we have to use the formula to find the point A of $\Delta ABC$ which is mentioned below.
Formula used: The coordinates of A in the figure given below when point A divides the line joining P and Q in the ratio m:n
The coordinates of A = $\left( {\dfrac{{mc + na}}{{m + n}},\dfrac{{md + nb}}{{m + n}}} \right).......................(A)$
Now, we have to using the formula of triangle which is passing through the points $\left( {a,b} \right),\left( {c,d} \right)$and $\left( {e,f} \right)$that is mentioned below:
Formula used:
Area of triangle which is passing through the points $\left( {a,b} \right),\left( {c,d} \right)$and $\left( {e,f} \right)$$ = \dfrac{1}{2}\left| {a\left( {d - f} \right) + c\left( {f - b} \right) + e\left( {b - d} \right)} \right|...............................(B)$
According to the question, we have to make the formula (B) equals to 2 then find the desired values of k.
Complete answer:
Step 1: As given in the question that The point A divides the join of P(-5,1) and Q(3,5) in the ratio k:1
So, first of all we have to find the coordinates of A with the help of the formula (A) as mentioned in the solution hint.
The coordinates of A = $\left( {\dfrac{{3k + 1\left( { - 5} \right)}}{{k + 1}},\dfrac{{5k + 1}}{{k + 1}}} \right)$
$ \Rightarrow $$\left( {\dfrac{{3k - 5}}{{k + 1}},\dfrac{{5k + 1}}{{k + 1}}} \right)$
Step 2: As given in the question, the area of $\Delta ABC$where B(1,5), C(7,-2) is 2 square units.
Now, we have to using the formula (B) as mentioned in the solution hint for point A $\left( {\dfrac{{3k - 5}}{{k + 1}},\dfrac{{5k + 1}}{{k + 1}}} \right)$, point B(1,5) and point C(7,-2).
Area of triangle $\Delta ABC$$ = \dfrac{1}{2}\left| {\left( {\dfrac{{3k - 5}}{{k + 1}}} \right)\left( {5 - \left( { - 2} \right)} \right) + 1\left( { - 2 - \left( {\dfrac{{5k + 1}}{{k + 1}}} \right)} \right) + 7\left( {\dfrac{{5k + 1}}{{k + 1}} - 5} \right)} \right|$
$ \Rightarrow 2$$ = \dfrac{1}{2}\left| {\left( {\dfrac{{3k - 5}}{{k + 1}}} \right)\left( {5 + 2} \right) + 1\left( { - 2 - \left( {\dfrac{{5k + 1}}{{k + 1}}} \right)} \right) + 7\left( {\dfrac{{5k + 1}}{{k + 1}} - 5} \right)} \right|$
Step 3: Now, we have to simplify the expression obtained in the solution step 2.
$ \Rightarrow 2$$ = \dfrac{1}{2}\left| {\left( {\dfrac{{3k - 5}}{{k + 1}}} \right).7 + 1\left( {\dfrac{{ - 2(k + 1) - 5k - 1}}{{k + 1}}} \right) + 7\left( {\dfrac{{5k + 1 - 5(k + 1)}}{{k + 1}}} \right)} \right|$
$ \Rightarrow 2$$ = \dfrac{1}{2}\left| {\left( {\dfrac{{21k - 35}}{{k + 1}}} \right) + \left( {\dfrac{{ - 2k - 2 - 5k - 1}}{{k + 1}}} \right) + 7\left( {\dfrac{{5k + 1 - 5k - 5}}{{k + 1}}} \right)} \right|$
$ \Rightarrow 2$$ = \dfrac{1}{2}\left| {\left( {\dfrac{{21k - 35}}{{k + 1}}} \right) + \left( {\dfrac{{ - 2k - 2 - 5k - 1}}{{k + 1}}} \right) + \left( {\dfrac{{ - 28}}{{k + 1}}} \right)} \right|$
Step 4: now, we have to simplify the expression obtained in the solution step 3 by taking the L.C.M of fractions.
$ \Rightarrow 2$$ = \dfrac{1}{2}\left| {\dfrac{{21k - 35 - 7k - 3 - 28}}{{k + 1}}} \right|$
$ \Rightarrow 4$$ = \left| {\dfrac{{14k - 66}}{{k + 1}}} \right|....................(1)$
Step 5 : Now, we know that $\left| x \right| = x, - x$. So, we use this rule in the expression (1) of the solution step 4
$ \Rightarrow 4$$ = \dfrac{{14k - 66}}{{k + 1}}$
$
\Rightarrow 4(k + 1) = 14k - 66 \\
\Rightarrow 4k + 4 = 14k - 66 \\
\Rightarrow 4 + 66 = 14k - 4k \\
\Rightarrow 70 = 10k \\
\Rightarrow 7 = k \\
$
Now, taking the negative sign of $\left| {\dfrac{{14k - 66}}{{k + 1}}} \right|$which is$ - \left( {\dfrac{{14k - 66}}{{k + 1}}} \right)$
$ \Rightarrow 4$$ = - \left( {\dfrac{{14k - 66}}{{k + 1}}} \right)$
$
\Rightarrow 4(k + 1) = - 14k + 66 \\
\Rightarrow 4k + 4 = - 14k + 66 \\
\Rightarrow 4k + 14k = 66 - 4 \\
\Rightarrow 18k = 62k \\
\Rightarrow k = \dfrac{{62}}{{18}} \\
\Rightarrow k = \dfrac{{31}}{9} \\
$
Hence, we have to find the value of k that is $7,\dfrac{{31}}{9}$. Therefore option (A) is correct.
Note:
It is necessary that we have to determine the points which divide the given line with the help of the help of the section formula for internal division coordinates.
It is necessary that we have to use all the points which are given and obtained point A to determine the value of k with the help of the formula to find the area of the triangle.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If x be real then the maximum value of 5 + 4x 4x2 will class 10 maths JEE_Main
The quadratic equation whose one root is 2sqrt3 will class 10 maths JEE_Main
If alpha and beta are the roots of the equation x2 class 10 maths JEE_Main
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE