Answer
Verified
491.4k+ views
Hint:- Coordinates of midpoint of a line is \[\left( {\dfrac{{{x_1} + {x_2}}}{2},\dfrac{{{y_1} + {y_2}}}{2}} \right)\]. If coordinates of
the end points of the line are \[({x_1},{y_1})\] and \[({x_2},{y_2})\].
We are given with the coordinates of midpoints of the sides of the triangle.
Let the coordinates of the vertices of the triangle be,
\[ \Rightarrow \]Vertices of the triangle are \[(a,b),{\text{ }}(c,d)\] and \[(e,f)\].
So, with the property of mid-point of the two given points.
We can write coordinates of mid-points of the sides of the triangle as,
\[ \Rightarrow \]Midpoint of the sides will be \[\left( {\dfrac{{a + c}}{2},\dfrac{{b + d}}{2}} \right),{\text{ }}\left( {\dfrac{{c + e}}{2},\dfrac{{d + f}}{2}} \right)\]and \[\left( {\dfrac{{a + e}}{2},\dfrac{{b + f}}{2}} \right).\]
As, we know that coordinates of centroid of the triangle are,
\[ \Rightarrow \]Centroid of the triangle is \[\left( {\dfrac{{a + c + e}}{3},\dfrac{{b + d + f}}{3}} \right)\]
And it can be easily seen that coordinates of the centroid of the triangle,
Can be easily obtained by adding the coordinates of the mid-points of its sides
and then dividing that by 3.
So, coordinates of centroid can be written as,
\[ \Rightarrow \]Centroid \[ \equiv \left( {\dfrac{{\left( {\dfrac{{a + c}}{2}} \right) + \left( {\dfrac{{c + e}}{2}} \right) + \left( {\dfrac{{a + e}}{2}} \right)}}{3},\dfrac{{\left( {\dfrac{{b + d}}{2}} \right) + \left( {\dfrac{{d + f}}{2}} \right) + \left( {\dfrac{{b + f}}{2}} \right)}}{3}} \right)\]
So, putting the values of a, b and c in the above point denoted as centroid. We get,
\[ \Rightarrow \]Centroid \[ \equiv \left( {\dfrac{{11 + 2 + 2}}{3},\dfrac{{9 + 1 - 1}}{3}} \right) \equiv \left( {5,3} \right)\]
\[ \Rightarrow \]Hence, the coordinates of the centroid of the triangle will be \[\left( {5,3} \right)\]
\[ \Rightarrow \]Hence, the correct option will be D.
Note:- Whenever we came up with this type of problem then first, we had to assume the
coordinates of vertices of triangle and then find mid-pints in terms of coordinates of
vertices. After that put coordinates of midpoints in terms of vertices of triangle in the formula
centroid triangle.
the end points of the line are \[({x_1},{y_1})\] and \[({x_2},{y_2})\].
We are given with the coordinates of midpoints of the sides of the triangle.
Let the coordinates of the vertices of the triangle be,
\[ \Rightarrow \]Vertices of the triangle are \[(a,b),{\text{ }}(c,d)\] and \[(e,f)\].
So, with the property of mid-point of the two given points.
We can write coordinates of mid-points of the sides of the triangle as,
\[ \Rightarrow \]Midpoint of the sides will be \[\left( {\dfrac{{a + c}}{2},\dfrac{{b + d}}{2}} \right),{\text{ }}\left( {\dfrac{{c + e}}{2},\dfrac{{d + f}}{2}} \right)\]and \[\left( {\dfrac{{a + e}}{2},\dfrac{{b + f}}{2}} \right).\]
As, we know that coordinates of centroid of the triangle are,
\[ \Rightarrow \]Centroid of the triangle is \[\left( {\dfrac{{a + c + e}}{3},\dfrac{{b + d + f}}{3}} \right)\]
And it can be easily seen that coordinates of the centroid of the triangle,
Can be easily obtained by adding the coordinates of the mid-points of its sides
and then dividing that by 3.
So, coordinates of centroid can be written as,
\[ \Rightarrow \]Centroid \[ \equiv \left( {\dfrac{{\left( {\dfrac{{a + c}}{2}} \right) + \left( {\dfrac{{c + e}}{2}} \right) + \left( {\dfrac{{a + e}}{2}} \right)}}{3},\dfrac{{\left( {\dfrac{{b + d}}{2}} \right) + \left( {\dfrac{{d + f}}{2}} \right) + \left( {\dfrac{{b + f}}{2}} \right)}}{3}} \right)\]
So, putting the values of a, b and c in the above point denoted as centroid. We get,
\[ \Rightarrow \]Centroid \[ \equiv \left( {\dfrac{{11 + 2 + 2}}{3},\dfrac{{9 + 1 - 1}}{3}} \right) \equiv \left( {5,3} \right)\]
\[ \Rightarrow \]Hence, the coordinates of the centroid of the triangle will be \[\left( {5,3} \right)\]
\[ \Rightarrow \]Hence, the correct option will be D.
Note:- Whenever we came up with this type of problem then first, we had to assume the
coordinates of vertices of triangle and then find mid-pints in terms of coordinates of
vertices. After that put coordinates of midpoints in terms of vertices of triangle in the formula
centroid triangle.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
What is BLO What is the full form of BLO class 8 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE