
The points with position vectors $ 60\widehat{i}+3\widehat{j} $ , $ 40\widehat{i}-8\widehat{j} $ , $ a\widehat{i}-52\widehat{j} $ are collinear if the value of a is
A. $ -40 $
B. 40
C. $ -20 $
D. 20
Answer
528.6k+ views
Hint: We first take the points and name them. The points are collinear which means the lines created by those points will be similar and also parallel. Using the condition of parallel lines we find the solution for $ a $ .
Complete step by step solution:
It’s given that the points with position vectors $ 60\widehat{i}+3\widehat{j} $ , $ 40\widehat{i}-8\widehat{j} $ , $ a\widehat{i}-52\widehat{j} $ are collinear.
We first assume the vectors as $ \overrightarrow{A}=60\widehat{i}+3\widehat{j} $ , $ \overrightarrow{B}=40\widehat{i}-8\widehat{j} $ , $ \overrightarrow{C}=a\widehat{i}-52\widehat{j} $ .
We now try to find the vector lines of $ \overrightarrow{AB},\overrightarrow{AC} $ which are same line as the points are collinear.
$ \overrightarrow{AB},\overrightarrow{AC} $ can be expressed as $ \overrightarrow{AB}=\overrightarrow{B}-\overrightarrow{A},\overrightarrow{AC}=\overrightarrow{C}-\overrightarrow{A} $ .
Therefore, $ \overrightarrow{AB}=\left( 40\widehat{i}-8\widehat{j} \right)-\left( 60\widehat{i}+3\widehat{j} \right)=\left( 40-60 \right)\widehat{i}+\left( -8-3 \right)\widehat{j}=-20\widehat{i}-11\widehat{j} $ and \[\overrightarrow{AC}=\left( a\widehat{i}-52\widehat{j} \right)-\left( 60\widehat{i}+3\widehat{j} \right)=\left( a-60 \right)\widehat{i}+\left( -52-3 \right)\widehat{j}=\left( a-60 \right)\widehat{i}-55\widehat{j}\].
These lines are similar which means they can be considered as parallel.
We know that for two parallel lines $ x\widehat{i}+y\widehat{j},m\widehat{i}+n\widehat{j} $ , we can say that $ \dfrac{x}{m}=\dfrac{y}{n} $ .
Now for $ -20\widehat{i}-11\widehat{j} $ and \[\left( a-60 \right)\widehat{i}-55\widehat{j}\], we can say $ \dfrac{-20}{a-60}=\dfrac{-11}{-55} $ .
We now sue the cross-multiplication to find the value of variable $ a $ .
Doing simplification, we get
$ \begin{align}
& \dfrac{-20}{a-60}=\dfrac{-11}{-55}=\dfrac{1}{5} \\
& \Rightarrow 5\times \left( -20 \right)=a-60 \\
& \Rightarrow a-60=-100 \\
& \Rightarrow a=-100+60=-40 \\
\end{align} $
Therefore, the value of $ a $ is $ -40 $ .
So, the correct answer is “Option A”.
Note: If $ ab+bc=ac $ then the three points are collinear. The line segments can be translated to vectors $ ab,bc,ac $ where the magnitude of the vectors is equal to the length of the respective line segments mentioned.
Complete step by step solution:
It’s given that the points with position vectors $ 60\widehat{i}+3\widehat{j} $ , $ 40\widehat{i}-8\widehat{j} $ , $ a\widehat{i}-52\widehat{j} $ are collinear.
We first assume the vectors as $ \overrightarrow{A}=60\widehat{i}+3\widehat{j} $ , $ \overrightarrow{B}=40\widehat{i}-8\widehat{j} $ , $ \overrightarrow{C}=a\widehat{i}-52\widehat{j} $ .
We now try to find the vector lines of $ \overrightarrow{AB},\overrightarrow{AC} $ which are same line as the points are collinear.
$ \overrightarrow{AB},\overrightarrow{AC} $ can be expressed as $ \overrightarrow{AB}=\overrightarrow{B}-\overrightarrow{A},\overrightarrow{AC}=\overrightarrow{C}-\overrightarrow{A} $ .
Therefore, $ \overrightarrow{AB}=\left( 40\widehat{i}-8\widehat{j} \right)-\left( 60\widehat{i}+3\widehat{j} \right)=\left( 40-60 \right)\widehat{i}+\left( -8-3 \right)\widehat{j}=-20\widehat{i}-11\widehat{j} $ and \[\overrightarrow{AC}=\left( a\widehat{i}-52\widehat{j} \right)-\left( 60\widehat{i}+3\widehat{j} \right)=\left( a-60 \right)\widehat{i}+\left( -52-3 \right)\widehat{j}=\left( a-60 \right)\widehat{i}-55\widehat{j}\].
These lines are similar which means they can be considered as parallel.
We know that for two parallel lines $ x\widehat{i}+y\widehat{j},m\widehat{i}+n\widehat{j} $ , we can say that $ \dfrac{x}{m}=\dfrac{y}{n} $ .
Now for $ -20\widehat{i}-11\widehat{j} $ and \[\left( a-60 \right)\widehat{i}-55\widehat{j}\], we can say $ \dfrac{-20}{a-60}=\dfrac{-11}{-55} $ .
We now sue the cross-multiplication to find the value of variable $ a $ .
Doing simplification, we get
$ \begin{align}
& \dfrac{-20}{a-60}=\dfrac{-11}{-55}=\dfrac{1}{5} \\
& \Rightarrow 5\times \left( -20 \right)=a-60 \\
& \Rightarrow a-60=-100 \\
& \Rightarrow a=-100+60=-40 \\
\end{align} $
Therefore, the value of $ a $ is $ -40 $ .
So, the correct answer is “Option A”.
Note: If $ ab+bc=ac $ then the three points are collinear. The line segments can be translated to vectors $ ab,bc,ac $ where the magnitude of the vectors is equal to the length of the respective line segments mentioned.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

