
The polynomial equation of degree 4 having real coefficients with three of its roots as $\left( 2\pm \sqrt{3} \right)\text{ and }\left( 1\pm 2i \right)$ is
\[\begin{align}
& A.{{x}^{4}}-6{{x}^{3}}+14{{x}^{2}}+22x+5=0 \\
& B.{{x}^{4}}-6{{x}^{3}}+19{{x}^{2}}+22x-5=0 \\
& C.{{x}^{4}}-6{{x}^{3}}+19{{x}^{2}}-22x+5=0 \\
& D.{{x}^{4}}-6{{x}^{3}}+14{{x}^{2}}-22x+5=0 \\
\end{align}\]
Answer
588k+ views
Hint: To solve this question, we will first obtain a fourth root and for that we will use the fact that imaginary roots always occur in pairs. After this, we will make two different quadratic equations by using $\left( 2\pm \sqrt{3} \right)\text{ and }\left( 1\pm 2i \right)$ separately. Finally, after obtaining 2 quadratic equations we will multiply them to obtain a final 4 degree polynomial.
Complete step-by-step answer:
We have to find a 4 degree polynomial with real coefficient. Let the polynomial be denoted by p(x).
Since, the polynomial is 4 degrees, so it has 4 roots. The roots are given as $2+\sqrt{3}\text{,}2-\sqrt{3}\text{ and }1+2i$
So, we are given 3 roots but one of them is 1+2i and the imaginary root/complex root always occurs in pairs and the pair of (1+2i) is (1-2i).
Therefore, (1-2i) is also a root of our polynomial.
Therefore, we now have all 4 roots as \[2+\sqrt{3}\text{,}2-\sqrt{3},1+2i\text{ and 1-2i}\]
Consider, first two roots: \[\Rightarrow \left( 2+\sqrt{3} \right)\text{ and }\left( 2-\sqrt{3} \right)\]
Any quadratic equation whose roots are $\alpha \text{ and }\beta $ can be formed by writing as
\[\Rightarrow {{x}^{2}}-\left( \text{sum of roots }\alpha \text{ and }\beta \right)x+\left( \text{product of roots }\alpha \text{ and }\beta \right)=0\]
Quadratic polynomial whose roots are $\alpha \text{ and }\beta $ are given as
\[{{x}^{2}}-\left( \alpha +\beta \right)x\left( \alpha \beta \right)=0\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (i)}\]
So, on the similar basis we will construct a quadratic polynomial having roots as \[\Rightarrow \left( 2+\sqrt{3} \right)\text{ and }\left( 2-\sqrt{3} \right)\]
Sum of roots \[\begin{align}
& \Rightarrow 2+\sqrt{3}+2-\sqrt{3}=4+\sqrt{3}-\sqrt{3} \\
& \Rightarrow 4\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (ii)} \\
\end{align}\]
And product of roots \[\Rightarrow \left( 2+\sqrt{3} \right)\left( 2-\sqrt{3} \right)=1\]
Now, we know that \[\Rightarrow \left( a-b \right)\left( a+b \right)={{a}^{2}}-{{b}^{2}}\]
Applying this in above we get:
Product of roots \[\Rightarrow {{\left( 2 \right)}^{2}}-{{\left( \sqrt{3} \right)}^{2}}=4-3=1\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (iii)}\]
Forming a quadratic equation whose roots are $\left( 2+\sqrt{3} \right)\text{ and }\left( 2-\sqrt{3} \right)$ by form of equation (i) using equation (ii) and (iii) we get:
\[\begin{align}
& {{x}^{2}}-\left( 4 \right)x+1=0 \\
& \Rightarrow {{x}^{2}}-4x+1=0\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (iv)} \\
\end{align}\]
Similarly, we will try to obtain a quadratic polynomial whose roots are (1+2i) and (1-2i).
Sum of roots \[\Rightarrow 1+2i+1-2\text{i}=2+2i-2i=2\]
And product of roots \[\Rightarrow \left( 1+2i \right)\left( 1-2\text{i} \right)\]
Again using \[\Rightarrow \left( a-b \right)\left( a+b \right)={{a}^{2}}-{{b}^{2}}\] we get:
Product of roots:
\[\begin{align}
& \Rightarrow \left( {{1}^{2}}-{{\left( 2i \right)}^{2}} \right)={{1}^{2}}-4{{i}^{2}} \\
& \Rightarrow {{i}^{2}}=-1 \\
& \text{Product}=1+4=5 \\
\end{align}\]
So, the quadratic equation formed using roots (1+2i) and (1-2i) as given in equation (i) is as below:
\[{{x}^{2}}-2x+5=0\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (v)}\]
So finally we have obtained two quadratic equations from (iv) and (v) equation. Multiplying (iv) and (v) to get p(x).
\[\begin{align}
& p\left( x \right)=\left( {{x}^{2}}-2x+5 \right)\left( {{x}^{2}}-4x+1 \right) \\
& \Rightarrow {{x}^{2}}\left( {{x}^{2}}-4x+1 \right)-2x\left( {{x}^{2}}-4x+1 \right)+5\left( {{x}^{2}}-4x+1 \right) \\
& \Rightarrow {{x}^{4}}-4{{x}^{3}}+{{x}^{2}}-2{{x}^{3}}+8{{x}^{2}}-2x+5{{x}^{2}}-20x+5 \\
& \Rightarrow {{x}^{4}}-6{{x}^{3}}+14{{x}^{2}}-22x+5 \\
\end{align}\]
So, our required polynomial is
\[p\left( x \right)={{x}^{4}}-6{{x}^{3}}+14{{x}^{2}}-22x+5\] which is option D.
So, the correct answer is “Option D”.
Note: The possibility of mistake in this question can be not trying to obtain the fourth root of p(x) and directly calculating the value of p(x). Always remember that, a ‘n’ degree polynomial has n roots whether real or imaginary.
Also, imaginary or complex roots always occur in pairs if $\left( \alpha +i\beta \right)$ is a root then $\left( \alpha -i\beta \right)$ is also a root of the same polynomial.
Complete step-by-step answer:
We have to find a 4 degree polynomial with real coefficient. Let the polynomial be denoted by p(x).
Since, the polynomial is 4 degrees, so it has 4 roots. The roots are given as $2+\sqrt{3}\text{,}2-\sqrt{3}\text{ and }1+2i$
So, we are given 3 roots but one of them is 1+2i and the imaginary root/complex root always occurs in pairs and the pair of (1+2i) is (1-2i).
Therefore, (1-2i) is also a root of our polynomial.
Therefore, we now have all 4 roots as \[2+\sqrt{3}\text{,}2-\sqrt{3},1+2i\text{ and 1-2i}\]
Consider, first two roots: \[\Rightarrow \left( 2+\sqrt{3} \right)\text{ and }\left( 2-\sqrt{3} \right)\]
Any quadratic equation whose roots are $\alpha \text{ and }\beta $ can be formed by writing as
\[\Rightarrow {{x}^{2}}-\left( \text{sum of roots }\alpha \text{ and }\beta \right)x+\left( \text{product of roots }\alpha \text{ and }\beta \right)=0\]
Quadratic polynomial whose roots are $\alpha \text{ and }\beta $ are given as
\[{{x}^{2}}-\left( \alpha +\beta \right)x\left( \alpha \beta \right)=0\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (i)}\]
So, on the similar basis we will construct a quadratic polynomial having roots as \[\Rightarrow \left( 2+\sqrt{3} \right)\text{ and }\left( 2-\sqrt{3} \right)\]
Sum of roots \[\begin{align}
& \Rightarrow 2+\sqrt{3}+2-\sqrt{3}=4+\sqrt{3}-\sqrt{3} \\
& \Rightarrow 4\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (ii)} \\
\end{align}\]
And product of roots \[\Rightarrow \left( 2+\sqrt{3} \right)\left( 2-\sqrt{3} \right)=1\]
Now, we know that \[\Rightarrow \left( a-b \right)\left( a+b \right)={{a}^{2}}-{{b}^{2}}\]
Applying this in above we get:
Product of roots \[\Rightarrow {{\left( 2 \right)}^{2}}-{{\left( \sqrt{3} \right)}^{2}}=4-3=1\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (iii)}\]
Forming a quadratic equation whose roots are $\left( 2+\sqrt{3} \right)\text{ and }\left( 2-\sqrt{3} \right)$ by form of equation (i) using equation (ii) and (iii) we get:
\[\begin{align}
& {{x}^{2}}-\left( 4 \right)x+1=0 \\
& \Rightarrow {{x}^{2}}-4x+1=0\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (iv)} \\
\end{align}\]
Similarly, we will try to obtain a quadratic polynomial whose roots are (1+2i) and (1-2i).
Sum of roots \[\Rightarrow 1+2i+1-2\text{i}=2+2i-2i=2\]
And product of roots \[\Rightarrow \left( 1+2i \right)\left( 1-2\text{i} \right)\]
Again using \[\Rightarrow \left( a-b \right)\left( a+b \right)={{a}^{2}}-{{b}^{2}}\] we get:
Product of roots:
\[\begin{align}
& \Rightarrow \left( {{1}^{2}}-{{\left( 2i \right)}^{2}} \right)={{1}^{2}}-4{{i}^{2}} \\
& \Rightarrow {{i}^{2}}=-1 \\
& \text{Product}=1+4=5 \\
\end{align}\]
So, the quadratic equation formed using roots (1+2i) and (1-2i) as given in equation (i) is as below:
\[{{x}^{2}}-2x+5=0\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (v)}\]
So finally we have obtained two quadratic equations from (iv) and (v) equation. Multiplying (iv) and (v) to get p(x).
\[\begin{align}
& p\left( x \right)=\left( {{x}^{2}}-2x+5 \right)\left( {{x}^{2}}-4x+1 \right) \\
& \Rightarrow {{x}^{2}}\left( {{x}^{2}}-4x+1 \right)-2x\left( {{x}^{2}}-4x+1 \right)+5\left( {{x}^{2}}-4x+1 \right) \\
& \Rightarrow {{x}^{4}}-4{{x}^{3}}+{{x}^{2}}-2{{x}^{3}}+8{{x}^{2}}-2x+5{{x}^{2}}-20x+5 \\
& \Rightarrow {{x}^{4}}-6{{x}^{3}}+14{{x}^{2}}-22x+5 \\
\end{align}\]
So, our required polynomial is
\[p\left( x \right)={{x}^{4}}-6{{x}^{3}}+14{{x}^{2}}-22x+5\] which is option D.
So, the correct answer is “Option D”.
Note: The possibility of mistake in this question can be not trying to obtain the fourth root of p(x) and directly calculating the value of p(x). Always remember that, a ‘n’ degree polynomial has n roots whether real or imaginary.
Also, imaginary or complex roots always occur in pairs if $\left( \alpha +i\beta \right)$ is a root then $\left( \alpha -i\beta \right)$ is also a root of the same polynomial.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

