The potential energy of a particle of mass 5kg moving in the x – y plane is given by U = (-7x+24y) J, x and y being in meters. If the particle starts from rest from origin then speed of particle at t = 2s is
a) $5m{s^{ - 1}}$
b) $01m{s^{ - 1}}$
c) $17.5m{s^{ - 1}}$
d) $10m{s^{ - 1}}$
Answer
Verified
463.2k+ views
Hint: Newton’s second law of motion states that the force is equal to the rate of change of momentum. Force is equal to the mass times acceleration, for a constant mass. The given question is an application of Newton's second law of motion. In order to find the solution of the question write down the given physical quantities and apply the formula.
Formula Used: F = ma
Complete answer:
It is given in the question that,
Mass of the particle is, m = 5kg
Initial velocity, U = 0
Time, t = 2sec
We have to find the, Final speed of the particle, i.e. v =?
The relation between the potential energy and the conservative force is given as,
$\eqalign{
& \vec F = \dfrac{{du}}{{dx}}\hat i - \dfrac{{du}}{{dx}}\hat j - \dfrac{{du}}{{dx}}\hat k \cr
& \Rightarrow \vec F = \dfrac{{du}}{{dx}}\left( {7x + 24y} \right) - \dfrac{{du}}{{dx}}\left( {7x + 24y} \right) - 0 \cr
& \Rightarrow \vec F = \left[ { - 7\dfrac{d}{{dx}}\left( x \right) - 0} \right]\hat i - \left[ {7\left( 0 \right) + \dfrac{d}{{dy}}\left( {24y} \right)} \right]\hat j \cr
& \Rightarrow \vec F = - 7\hat i - 24\hat j \cr
& \Rightarrow F = \sqrt {{{\left( { - 7} \right)}^2} + {{\left( { - 24} \right)}^2}} \cr
& \therefore F = 25N \cr} $
We know that force is given by the formula,
F = ma
Where ‘F’ is the force, ‘m’ is the mass of the object or the particle and ‘a’ is the acceleration. Substituting acceleration ‘a’ as, $a = \dfrac{v}{t}$
we get, $F = m\left( {\dfrac{{v - u}}{t}} \right)$
Since the initial velocity ‘u’ of the particle is zero.
Substituting the value of force ‘F’ and mass ‘m’ of the particle we get,
$\eqalign{
& \Rightarrow 25 = 5\left( {\dfrac{{v - 0}}{2}} \right) \cr
& \therefore v = 10m{s^{ - 1}} \cr} $
Thus, the speed of particles at t = 2s is 10m/s.
Hence, option (d) is the correct answer.
Note:
A conservative is defined as the force for which the total work done to move a particle between two given points is independent of the path taken.
Students should remember that in case of conservative forces such as gravitational force, electrostatic force, force is taken as, F = $ - \dfrac{{dU}}{{dx}}$.
Formula Used: F = ma
Complete answer:
It is given in the question that,
Mass of the particle is, m = 5kg
Initial velocity, U = 0
Time, t = 2sec
We have to find the, Final speed of the particle, i.e. v =?
The relation between the potential energy and the conservative force is given as,
$\eqalign{
& \vec F = \dfrac{{du}}{{dx}}\hat i - \dfrac{{du}}{{dx}}\hat j - \dfrac{{du}}{{dx}}\hat k \cr
& \Rightarrow \vec F = \dfrac{{du}}{{dx}}\left( {7x + 24y} \right) - \dfrac{{du}}{{dx}}\left( {7x + 24y} \right) - 0 \cr
& \Rightarrow \vec F = \left[ { - 7\dfrac{d}{{dx}}\left( x \right) - 0} \right]\hat i - \left[ {7\left( 0 \right) + \dfrac{d}{{dy}}\left( {24y} \right)} \right]\hat j \cr
& \Rightarrow \vec F = - 7\hat i - 24\hat j \cr
& \Rightarrow F = \sqrt {{{\left( { - 7} \right)}^2} + {{\left( { - 24} \right)}^2}} \cr
& \therefore F = 25N \cr} $
We know that force is given by the formula,
F = ma
Where ‘F’ is the force, ‘m’ is the mass of the object or the particle and ‘a’ is the acceleration. Substituting acceleration ‘a’ as, $a = \dfrac{v}{t}$
we get, $F = m\left( {\dfrac{{v - u}}{t}} \right)$
Since the initial velocity ‘u’ of the particle is zero.
Substituting the value of force ‘F’ and mass ‘m’ of the particle we get,
$\eqalign{
& \Rightarrow 25 = 5\left( {\dfrac{{v - 0}}{2}} \right) \cr
& \therefore v = 10m{s^{ - 1}} \cr} $
Thus, the speed of particles at t = 2s is 10m/s.
Hence, option (d) is the correct answer.
Note:
A conservative is defined as the force for which the total work done to move a particle between two given points is independent of the path taken.
Students should remember that in case of conservative forces such as gravitational force, electrostatic force, force is taken as, F = $ - \dfrac{{dU}}{{dx}}$.
Recently Updated Pages
Master Class 11 Accountancy: Engaging Questions & Answers for Success
Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE
The highest possible oxidation states of Uranium and class 11 chemistry CBSE
Find the value of x if the mode of the following data class 11 maths CBSE
Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE
A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE
Trending doubts
10 examples of friction in our daily life
Difference Between Prokaryotic Cells and Eukaryotic Cells
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
State and prove Bernoullis theorem class 11 physics CBSE
What organs are located on the left side of your body class 11 biology CBSE
Define least count of vernier callipers How do you class 11 physics CBSE