Answer
Verified
428.4k+ views
Hint: Here, the given term is in geometric progression as the terms are increasing in fixed ratio. So, we will use the concept of Geometric Progression to solve the question. A geometric progression is a sequence or series of numbers where each term after the first is found out by multiplying the previous one by a fixed number called the common ratio.
Formula used:
We will use the following formulas:
1. Exponential Formula: \[{a^m} \cdot {a^n} \cdot {a^o} \cdot {a^p}..... = {a^{m + n + o + p + .........}}\]
2. Exponential Formula: \[{\left( {{a^m}} \right)^n} = {a^{mn}}\]
3. Geometric Progression is given by \[{S_n} = \dfrac{{a(1 - {r^n})}}{{(1 - r)}}\] , where \[a\] is the first term and \[r\] is the common ratio.
Complete Step by Step Solution:
We are given with a geometric Series \[\left( {32} \right){\left( {32} \right)^{\dfrac{1}{6}}}{\left( {32} \right)^{\dfrac{1}{{36}}}}.......\infty \].
The given series is of the form \[a \cdot ar \cdot a{r^2} \cdot ....... \cdot a{r^n}\]
Thus, the first term of the Geometric Series \[a = 32\] and \[r = {1^{\dfrac{1}{6}}}\].
By using the formula \[{a^m} \cdot {a^n} \cdot {a^o} \cdot {a^p}..... = {a^{m + n + o + p + .........}}\], we can rewrite the given equation as:
\[ \Rightarrow \left( {32} \right){\left( {32} \right)^{\dfrac{1}{6}}}{\left( {32} \right)^{\dfrac{1}{{36}}}}.......\infty = {32^{\left( {1 + \dfrac{1}{6} + \dfrac{1}{{36}} + .......} \right)}}\]
Now, by applying the formula of Geometric Progression \[{S_n} = \dfrac{{a(1 - {r^n})}}{{(1 - r)}}\] to the power, we get
\[ \Rightarrow \left( {32} \right){\left( {32} \right)^{\dfrac{1}{6}}}{\left( {32} \right)^{\dfrac{1}{{36}}}}.......\infty = {32^{\left( {\dfrac{{1(1 - 0)}}{{1 - \dfrac{1}{6}}}} \right)}}\]
By cross multiplying, we get
\[ \Rightarrow \left( {32} \right){\left( {32} \right)^{\dfrac{1}{6}}}{\left( {32} \right)^{\dfrac{1}{{36}}}}.......\infty = {32^{\left( {\dfrac{1}{{\dfrac{{6 - 1}}{6}}}} \right)}}\]
Simplifying the expression, we get
\[ \Rightarrow \left( {32} \right){\left( {32} \right)^{\dfrac{1}{6}}}{\left( {32} \right)^{\dfrac{1}{{36}}}}.......\infty = {32^{\left( {\dfrac{1}{{\dfrac{5}{6}}}} \right)}}\]
\[ \Rightarrow \left( {32} \right){\left( {32} \right)^{\dfrac{1}{6}}}{\left( {32} \right)^{\dfrac{1}{{36}}}}.......\infty = {32^{\left( {\dfrac{6}{5}} \right)}}\]
Rewriting \[32\] in terms of the power of \[2\], we get
\[ \Rightarrow \left( {32} \right){\left( {32} \right)^{\dfrac{1}{6}}}{\left( {32} \right)^{\dfrac{1}{{36}}}}.......\infty = {2^{^5}}^{\left( {\dfrac{6}{5}} \right)}\]
Now, by using the formula \[{\left( {{a^m}} \right)^n} = {a^{mn}}\], we have
\[ \Rightarrow \left( {32} \right){\left( {32} \right)^{\dfrac{1}{6}}}{\left( {32} \right)^{\dfrac{1}{{36}}}}.......\infty = {2^6}\]
\[ \Rightarrow \left( {32} \right){\left( {32} \right)^{\dfrac{1}{6}}}{\left( {32} \right)^{\dfrac{1}{{36}}}}.......\infty = 64\]
Therefore, the product \[\left( {32} \right){\left( {32} \right)^{\dfrac{1}{6}}}{\left( {32} \right)^{\dfrac{1}{{36}}}}.......\infty \] is \[64\].
Note:
Here, we need to remember the basics of the Geometric Series and Geometric Sequence. The properties of G.P. are:
1. If every term of G.P. is multiplied or divided by a non-zero number, then the resulting terms are also in G.P.
2. If the common ratio is negative, then the result will alternate between positive and negative.
3. If the common ratio is greater than 1 then there will be an exponential growth towards infinity (positive).
4. If the common ratio is less than \[-1\] then there will be an exponential growth towards infinity (positive and negative).
Formula used:
We will use the following formulas:
1. Exponential Formula: \[{a^m} \cdot {a^n} \cdot {a^o} \cdot {a^p}..... = {a^{m + n + o + p + .........}}\]
2. Exponential Formula: \[{\left( {{a^m}} \right)^n} = {a^{mn}}\]
3. Geometric Progression is given by \[{S_n} = \dfrac{{a(1 - {r^n})}}{{(1 - r)}}\] , where \[a\] is the first term and \[r\] is the common ratio.
Complete Step by Step Solution:
We are given with a geometric Series \[\left( {32} \right){\left( {32} \right)^{\dfrac{1}{6}}}{\left( {32} \right)^{\dfrac{1}{{36}}}}.......\infty \].
The given series is of the form \[a \cdot ar \cdot a{r^2} \cdot ....... \cdot a{r^n}\]
Thus, the first term of the Geometric Series \[a = 32\] and \[r = {1^{\dfrac{1}{6}}}\].
By using the formula \[{a^m} \cdot {a^n} \cdot {a^o} \cdot {a^p}..... = {a^{m + n + o + p + .........}}\], we can rewrite the given equation as:
\[ \Rightarrow \left( {32} \right){\left( {32} \right)^{\dfrac{1}{6}}}{\left( {32} \right)^{\dfrac{1}{{36}}}}.......\infty = {32^{\left( {1 + \dfrac{1}{6} + \dfrac{1}{{36}} + .......} \right)}}\]
Now, by applying the formula of Geometric Progression \[{S_n} = \dfrac{{a(1 - {r^n})}}{{(1 - r)}}\] to the power, we get
\[ \Rightarrow \left( {32} \right){\left( {32} \right)^{\dfrac{1}{6}}}{\left( {32} \right)^{\dfrac{1}{{36}}}}.......\infty = {32^{\left( {\dfrac{{1(1 - 0)}}{{1 - \dfrac{1}{6}}}} \right)}}\]
By cross multiplying, we get
\[ \Rightarrow \left( {32} \right){\left( {32} \right)^{\dfrac{1}{6}}}{\left( {32} \right)^{\dfrac{1}{{36}}}}.......\infty = {32^{\left( {\dfrac{1}{{\dfrac{{6 - 1}}{6}}}} \right)}}\]
Simplifying the expression, we get
\[ \Rightarrow \left( {32} \right){\left( {32} \right)^{\dfrac{1}{6}}}{\left( {32} \right)^{\dfrac{1}{{36}}}}.......\infty = {32^{\left( {\dfrac{1}{{\dfrac{5}{6}}}} \right)}}\]
\[ \Rightarrow \left( {32} \right){\left( {32} \right)^{\dfrac{1}{6}}}{\left( {32} \right)^{\dfrac{1}{{36}}}}.......\infty = {32^{\left( {\dfrac{6}{5}} \right)}}\]
Rewriting \[32\] in terms of the power of \[2\], we get
\[ \Rightarrow \left( {32} \right){\left( {32} \right)^{\dfrac{1}{6}}}{\left( {32} \right)^{\dfrac{1}{{36}}}}.......\infty = {2^{^5}}^{\left( {\dfrac{6}{5}} \right)}\]
Now, by using the formula \[{\left( {{a^m}} \right)^n} = {a^{mn}}\], we have
\[ \Rightarrow \left( {32} \right){\left( {32} \right)^{\dfrac{1}{6}}}{\left( {32} \right)^{\dfrac{1}{{36}}}}.......\infty = {2^6}\]
\[ \Rightarrow \left( {32} \right){\left( {32} \right)^{\dfrac{1}{6}}}{\left( {32} \right)^{\dfrac{1}{{36}}}}.......\infty = 64\]
Therefore, the product \[\left( {32} \right){\left( {32} \right)^{\dfrac{1}{6}}}{\left( {32} \right)^{\dfrac{1}{{36}}}}.......\infty \] is \[64\].
Note:
Here, we need to remember the basics of the Geometric Series and Geometric Sequence. The properties of G.P. are:
1. If every term of G.P. is multiplied or divided by a non-zero number, then the resulting terms are also in G.P.
2. If the common ratio is negative, then the result will alternate between positive and negative.
3. If the common ratio is greater than 1 then there will be an exponential growth towards infinity (positive).
4. If the common ratio is less than \[-1\] then there will be an exponential growth towards infinity (positive and negative).
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE