Answer
Verified
430.2k+ views
Hint: Here, the given term is in geometric progression as the terms are increasing in fixed ratio. So, we will use the concept of Geometric Progression to solve the question. A geometric progression is a sequence or series of numbers where each term after the first is found out by multiplying the previous one by a fixed number called the common ratio.
Formula used:
We will use the following formulas:
1. Exponential Formula: \[{a^m} \cdot {a^n} \cdot {a^o} \cdot {a^p}..... = {a^{m + n + o + p + .........}}\]
2. Exponential Formula: \[{\left( {{a^m}} \right)^n} = {a^{mn}}\]
3. Geometric Progression is given by \[{S_n} = \dfrac{{a(1 - {r^n})}}{{(1 - r)}}\] , where \[a\] is the first term and \[r\] is the common ratio.
Complete Step by Step Solution:
We are given with a geometric Series \[\left( {32} \right){\left( {32} \right)^{\dfrac{1}{6}}}{\left( {32} \right)^{\dfrac{1}{{36}}}}.......\infty \].
The given series is of the form \[a \cdot ar \cdot a{r^2} \cdot ....... \cdot a{r^n}\]
Thus, the first term of the Geometric Series \[a = 32\] and \[r = {1^{\dfrac{1}{6}}}\].
By using the formula \[{a^m} \cdot {a^n} \cdot {a^o} \cdot {a^p}..... = {a^{m + n + o + p + .........}}\], we can rewrite the given equation as:
\[ \Rightarrow \left( {32} \right){\left( {32} \right)^{\dfrac{1}{6}}}{\left( {32} \right)^{\dfrac{1}{{36}}}}.......\infty = {32^{\left( {1 + \dfrac{1}{6} + \dfrac{1}{{36}} + .......} \right)}}\]
Now, by applying the formula of Geometric Progression \[{S_n} = \dfrac{{a(1 - {r^n})}}{{(1 - r)}}\] to the power, we get
\[ \Rightarrow \left( {32} \right){\left( {32} \right)^{\dfrac{1}{6}}}{\left( {32} \right)^{\dfrac{1}{{36}}}}.......\infty = {32^{\left( {\dfrac{{1(1 - 0)}}{{1 - \dfrac{1}{6}}}} \right)}}\]
By cross multiplying, we get
\[ \Rightarrow \left( {32} \right){\left( {32} \right)^{\dfrac{1}{6}}}{\left( {32} \right)^{\dfrac{1}{{36}}}}.......\infty = {32^{\left( {\dfrac{1}{{\dfrac{{6 - 1}}{6}}}} \right)}}\]
Simplifying the expression, we get
\[ \Rightarrow \left( {32} \right){\left( {32} \right)^{\dfrac{1}{6}}}{\left( {32} \right)^{\dfrac{1}{{36}}}}.......\infty = {32^{\left( {\dfrac{1}{{\dfrac{5}{6}}}} \right)}}\]
\[ \Rightarrow \left( {32} \right){\left( {32} \right)^{\dfrac{1}{6}}}{\left( {32} \right)^{\dfrac{1}{{36}}}}.......\infty = {32^{\left( {\dfrac{6}{5}} \right)}}\]
Rewriting \[32\] in terms of the power of \[2\], we get
\[ \Rightarrow \left( {32} \right){\left( {32} \right)^{\dfrac{1}{6}}}{\left( {32} \right)^{\dfrac{1}{{36}}}}.......\infty = {2^{^5}}^{\left( {\dfrac{6}{5}} \right)}\]
Now, by using the formula \[{\left( {{a^m}} \right)^n} = {a^{mn}}\], we have
\[ \Rightarrow \left( {32} \right){\left( {32} \right)^{\dfrac{1}{6}}}{\left( {32} \right)^{\dfrac{1}{{36}}}}.......\infty = {2^6}\]
\[ \Rightarrow \left( {32} \right){\left( {32} \right)^{\dfrac{1}{6}}}{\left( {32} \right)^{\dfrac{1}{{36}}}}.......\infty = 64\]
Therefore, the product \[\left( {32} \right){\left( {32} \right)^{\dfrac{1}{6}}}{\left( {32} \right)^{\dfrac{1}{{36}}}}.......\infty \] is \[64\].
Note:
Here, we need to remember the basics of the Geometric Series and Geometric Sequence. The properties of G.P. are:
1. If every term of G.P. is multiplied or divided by a non-zero number, then the resulting terms are also in G.P.
2. If the common ratio is negative, then the result will alternate between positive and negative.
3. If the common ratio is greater than 1 then there will be an exponential growth towards infinity (positive).
4. If the common ratio is less than \[-1\] then there will be an exponential growth towards infinity (positive and negative).
Formula used:
We will use the following formulas:
1. Exponential Formula: \[{a^m} \cdot {a^n} \cdot {a^o} \cdot {a^p}..... = {a^{m + n + o + p + .........}}\]
2. Exponential Formula: \[{\left( {{a^m}} \right)^n} = {a^{mn}}\]
3. Geometric Progression is given by \[{S_n} = \dfrac{{a(1 - {r^n})}}{{(1 - r)}}\] , where \[a\] is the first term and \[r\] is the common ratio.
Complete Step by Step Solution:
We are given with a geometric Series \[\left( {32} \right){\left( {32} \right)^{\dfrac{1}{6}}}{\left( {32} \right)^{\dfrac{1}{{36}}}}.......\infty \].
The given series is of the form \[a \cdot ar \cdot a{r^2} \cdot ....... \cdot a{r^n}\]
Thus, the first term of the Geometric Series \[a = 32\] and \[r = {1^{\dfrac{1}{6}}}\].
By using the formula \[{a^m} \cdot {a^n} \cdot {a^o} \cdot {a^p}..... = {a^{m + n + o + p + .........}}\], we can rewrite the given equation as:
\[ \Rightarrow \left( {32} \right){\left( {32} \right)^{\dfrac{1}{6}}}{\left( {32} \right)^{\dfrac{1}{{36}}}}.......\infty = {32^{\left( {1 + \dfrac{1}{6} + \dfrac{1}{{36}} + .......} \right)}}\]
Now, by applying the formula of Geometric Progression \[{S_n} = \dfrac{{a(1 - {r^n})}}{{(1 - r)}}\] to the power, we get
\[ \Rightarrow \left( {32} \right){\left( {32} \right)^{\dfrac{1}{6}}}{\left( {32} \right)^{\dfrac{1}{{36}}}}.......\infty = {32^{\left( {\dfrac{{1(1 - 0)}}{{1 - \dfrac{1}{6}}}} \right)}}\]
By cross multiplying, we get
\[ \Rightarrow \left( {32} \right){\left( {32} \right)^{\dfrac{1}{6}}}{\left( {32} \right)^{\dfrac{1}{{36}}}}.......\infty = {32^{\left( {\dfrac{1}{{\dfrac{{6 - 1}}{6}}}} \right)}}\]
Simplifying the expression, we get
\[ \Rightarrow \left( {32} \right){\left( {32} \right)^{\dfrac{1}{6}}}{\left( {32} \right)^{\dfrac{1}{{36}}}}.......\infty = {32^{\left( {\dfrac{1}{{\dfrac{5}{6}}}} \right)}}\]
\[ \Rightarrow \left( {32} \right){\left( {32} \right)^{\dfrac{1}{6}}}{\left( {32} \right)^{\dfrac{1}{{36}}}}.......\infty = {32^{\left( {\dfrac{6}{5}} \right)}}\]
Rewriting \[32\] in terms of the power of \[2\], we get
\[ \Rightarrow \left( {32} \right){\left( {32} \right)^{\dfrac{1}{6}}}{\left( {32} \right)^{\dfrac{1}{{36}}}}.......\infty = {2^{^5}}^{\left( {\dfrac{6}{5}} \right)}\]
Now, by using the formula \[{\left( {{a^m}} \right)^n} = {a^{mn}}\], we have
\[ \Rightarrow \left( {32} \right){\left( {32} \right)^{\dfrac{1}{6}}}{\left( {32} \right)^{\dfrac{1}{{36}}}}.......\infty = {2^6}\]
\[ \Rightarrow \left( {32} \right){\left( {32} \right)^{\dfrac{1}{6}}}{\left( {32} \right)^{\dfrac{1}{{36}}}}.......\infty = 64\]
Therefore, the product \[\left( {32} \right){\left( {32} \right)^{\dfrac{1}{6}}}{\left( {32} \right)^{\dfrac{1}{{36}}}}.......\infty \] is \[64\].
Note:
Here, we need to remember the basics of the Geometric Series and Geometric Sequence. The properties of G.P. are:
1. If every term of G.P. is multiplied or divided by a non-zero number, then the resulting terms are also in G.P.
2. If the common ratio is negative, then the result will alternate between positive and negative.
3. If the common ratio is greater than 1 then there will be an exponential growth towards infinity (positive).
4. If the common ratio is less than \[-1\] then there will be an exponential growth towards infinity (positive and negative).
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE