
The proposition is a
A)Tautology
B)Neither tautology nor contradiction
C)Contradiction
D)None of these
Answer
493.8k+ views
Hint: We know that a tautology is a formula which is "always true" that is, it is true for every assignment of truth values to its simple components. You can think of a tautology as a rule of logic. The opposite of a tautology is a contradiction, a formula which is "always false". A proposition which is neither a tautology nor a contradiction is called contingency. Write a truth table for the given proposition and see whether all are true or all are false or neither of those.
Complete step by step answer:
By first writing the truth table of , we get it as
Now by writing the truth table of , we get it as
Truth table for a tautology has T in its every row.
Truth table for a contradiction has F in its every row.
A proposition which is neither a tautology nor a contradiction is called contingency.
Contingency has both T and F in its truth table.
In this resulted table we can see that all the outputs are T i.e. True.
Therefore, it is clearly tautology because all the outputs are T irrespective of the value of p.
So, the correct answer is option A.
Note:
Read the definitions of tautology , contradiction and contingency. Practice more problems to get a hold of these types of problems. Remember that if a composite proposition is contingent then it cannot be tautology and it also cannot be a contradiction.
Complete step by step answer:
By first writing the truth table of
p | p | |
T | T | T |
F | F | T |
Now by writing the truth table of
p | p | ||
T | T | T | T |
F | F | T | T |
Truth table for a tautology has T in its every row.
Truth table for a contradiction has F in its every row.
A proposition which is neither a tautology nor a contradiction is called contingency.
Contingency has both T and F in its truth table.
In this resulted table we can see that all the outputs are T i.e. True.
Therefore, it is clearly tautology because all the outputs are T irrespective of the value of p.
So, the correct answer is option A.
Note:
Read the definitions of tautology , contradiction and contingency. Practice more problems to get a hold of these types of problems. Remember that if a composite proposition is contingent then it cannot be tautology and it also cannot be a contradiction.
Recently Updated Pages
Express the following as a fraction and simplify a class 7 maths CBSE

The length and width of a rectangle are in ratio of class 7 maths CBSE

The ratio of the income to the expenditure of a family class 7 maths CBSE

How do you write 025 million in scientific notatio class 7 maths CBSE

How do you convert 295 meters per second to kilometers class 7 maths CBSE

Write the following in Roman numerals 25819 class 7 maths CBSE

Trending doubts
State and prove Bernoullis theorem class 11 physics CBSE

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

Write the differences between monocot plants and dicot class 11 biology CBSE

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

State the laws of reflection of light

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
