Answer
Verified
459.9k+ views
Hint: The maximum energy loss is the difference in kinetic energy before collision and kinetic energy after collision. When two objects collide the total momentum before collision is equal to the momentum after collision in the absence of external forces. That is the law of conservation of momentum.
Formula used:
Kinetic energy, $K.E=\dfrac{{{p}^{2}}}{2m}$
Complete answer:
Let us consider two particles of masses ${{m}_{1}}$ and ${{m}_{2}}$ moving with velocities ${{u}_{1}}$ and ${{u}_{2}}$ respectively before collision. If there velocities after collision are ${{v}_{1}}$ and ${{v}_{2}}$, then according to conservation of momentum we have,
${{m}_{1}}{{u}_{1}}+{{m}_{2}}{{u}_{2}}={{m}_{1}}{{v}_{1}}+{{m}_{2}}{{v}_{2}}$
Here, the initial and final positions are widely separated so that the interaction forces between the particles becomes effectively zero. Hence the potential energy before and after remains the same. If the collision is perfectly elastic, the total kinetic energy of the particles is not changed by the collision.
$\dfrac{1}{2}{{m}_{1}}u_{1}^{2}+\dfrac{1}{2}{{m}_{2}}u_{2}^{2}=\dfrac{1}{2}{{m}_{1}}v_{1}^{2}+\dfrac{1}{2}{{m}_{2}}v_{2}^{2}$
According to the kinetic theory of gases, such elastic collision occurs between the molecules of a gas. This type of collision mostly takes place between atoms, electrons and protons.
In case of inelastic collision, a part of kinetic energy is converted to some other forms. This energy appears in the form of thermal energy in macroscopic particles.
Let p be the momentum before and after collision.
We know that,
Kinetic energy$K.E=\dfrac{{{p}^{2}}}{2m}$
Maximum energy loss $=\dfrac{{{p}^{2}}}{2m}-\dfrac{{{p}^{2}}}{2(m+M)}$
$=\dfrac{{{p}^{2}}}{2m}\left[ 1-\dfrac{m}{m+M} \right]$
$=\dfrac{1}{2}m{{v}^{2}}\left[ \dfrac{M}{m+M} \right]$
Hence statement I is false.
In inelastic collision loss of energy is maximum.
Thus statement II is true.
Thus option (C) is correct.
Note:
Maximum energy loss occurs when the particles strike together as a result of collision. The collision imparts force only along the line of collision, the collision does not change the velocities that are tangent to the point of collision. The velocities along the line of collision can be used as the same one dimensional equation.
Formula used:
Kinetic energy, $K.E=\dfrac{{{p}^{2}}}{2m}$
Complete answer:
Let us consider two particles of masses ${{m}_{1}}$ and ${{m}_{2}}$ moving with velocities ${{u}_{1}}$ and ${{u}_{2}}$ respectively before collision. If there velocities after collision are ${{v}_{1}}$ and ${{v}_{2}}$, then according to conservation of momentum we have,
${{m}_{1}}{{u}_{1}}+{{m}_{2}}{{u}_{2}}={{m}_{1}}{{v}_{1}}+{{m}_{2}}{{v}_{2}}$
Here, the initial and final positions are widely separated so that the interaction forces between the particles becomes effectively zero. Hence the potential energy before and after remains the same. If the collision is perfectly elastic, the total kinetic energy of the particles is not changed by the collision.
$\dfrac{1}{2}{{m}_{1}}u_{1}^{2}+\dfrac{1}{2}{{m}_{2}}u_{2}^{2}=\dfrac{1}{2}{{m}_{1}}v_{1}^{2}+\dfrac{1}{2}{{m}_{2}}v_{2}^{2}$
According to the kinetic theory of gases, such elastic collision occurs between the molecules of a gas. This type of collision mostly takes place between atoms, electrons and protons.
In case of inelastic collision, a part of kinetic energy is converted to some other forms. This energy appears in the form of thermal energy in macroscopic particles.
Let p be the momentum before and after collision.
We know that,
Kinetic energy$K.E=\dfrac{{{p}^{2}}}{2m}$
Maximum energy loss $=\dfrac{{{p}^{2}}}{2m}-\dfrac{{{p}^{2}}}{2(m+M)}$
$=\dfrac{{{p}^{2}}}{2m}\left[ 1-\dfrac{m}{m+M} \right]$
$=\dfrac{1}{2}m{{v}^{2}}\left[ \dfrac{M}{m+M} \right]$
Hence statement I is false.
In inelastic collision loss of energy is maximum.
Thus statement II is true.
Thus option (C) is correct.
Note:
Maximum energy loss occurs when the particles strike together as a result of collision. The collision imparts force only along the line of collision, the collision does not change the velocities that are tangent to the point of collision. The velocities along the line of collision can be used as the same one dimensional equation.
Recently Updated Pages
Write the IUPAC name of the given compound class 11 chemistry CBSE
Write the IUPAC name of the given compound class 11 chemistry CBSE
Write the IUPAC name of the given compound class 11 chemistry CBSE
Write the IUPAC name of the given compound class 11 chemistry CBSE
Write the IUPAC name of the given compound class 11 chemistry CBSE
Write the IUPAC name of the given compound class 11 chemistry CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The term ISWM refers to A Integrated Solid Waste Machine class 10 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Which is the longest day and shortest night in the class 11 sst CBSE
In a democracy the final decisionmaking power rests class 11 social science CBSE