Answer
Verified
439.5k+ views
Hint: To solve this question, we need to use the formula for the magnetic field produced due to a current carrying coil at its centre. Then we need to use the value of the deflection of the needle to deduce a relation between this magnetic field and the horizontal component of earth’s magnetic field.
Formula used:
The formula used to solve this question is given by
$\Rightarrow B = \dfrac{{8{\mu _0}nI}}{{5\sqrt 5 R}} $ , here $ B $ is the magnetic field produced between the two Helmholtz coils, $ n $ and $ R $ are respectively the number of turns and radius of each coil, $ I $ is the current in each coil, and $ {\mu _0} $ is the magnetic permeability in vacuum.
Complete step by step solution:
As there are two magnetic fields involved; one due to the current carrying coils, and the other due to the earth’s magnetic field, so the resultant magnetic field is the vector sum of the horizontal component of the earth’s magnetic field, and the field produced by the Helmholtz coils. We know that the total magnetic field produced by the coils of a Helmholtz galvanometer is given by
$B = \dfrac{{8{\mu _0}nI}}{{5\sqrt 5 R}} $ ……………...(1)
The vector diagram for the resultant magnetic field can be represented as below
We know that a magnetic field points in the direction of the resultant magnetic field, $ {B_N} $ . According to the question, the deflection of the magnetic needle is equal to $ {45^ \circ } $ . So we have from the above figure
$\theta = {45^ \circ } $
Also from the above figure
$\Rightarrow \tan \theta = \dfrac{B}{{{B_H}}} $
$\Rightarrow \tan {45^ \circ } = \dfrac{B}{{{B_H}}} $
We know that $ \tan {45^ \circ } = 1 $ . So we get
$\Rightarrow \dfrac{B}{{{B_H}}} = 1 $
$\Rightarrow B = {B_H} $
From (1)
$\Rightarrow \dfrac{{8{\mu _0}nI}}{{5\sqrt 5 R}} = {B_H} $
So we get the current in the coil as
$\Rightarrow I = \dfrac{{5\sqrt 5 R{B_H}}}{{8{\mu _0}n}} $ …………….(2)
Now, according to the question we have the radius of each coil $ r = 0.1m $ , the number of turns $ n = 25 $ , the value of the horizontal component of the earth’s magnetic field $ {B_H} = 0.314 \times {10^{ - 4}}T $ and as we know that $ {\mu _0} = 4\pi \times {10^{ - 7}} $ . Substituting these in (2) we get
$\Rightarrow I = \dfrac{{5\sqrt 5 \times 0.1 \times 0.314 \times {{10}^{ - 4}}}}{{8 \times 4\pi \times {{10}^{ - 7}} \times 25}} $
On solving, we finally get the current as,
$\Rightarrow I = 0.139{\text{A}} \approx {\text{0}}{\text{.14A}} $
Thus we get the value of the current equal to $ {\text{0}}{\text{.14A}} $ .
So the correct answer is option A.
Note:
We should not use the formula for the magnetic field which we have used in this solution as the value of the magnetic field on the common axis of the two coils at their mid point. And we also should not use the formula for the magnetic field at the centre of a circular current carrying loop, as it is due to a single coil.
Formula used:
The formula used to solve this question is given by
$\Rightarrow B = \dfrac{{8{\mu _0}nI}}{{5\sqrt 5 R}} $ , here $ B $ is the magnetic field produced between the two Helmholtz coils, $ n $ and $ R $ are respectively the number of turns and radius of each coil, $ I $ is the current in each coil, and $ {\mu _0} $ is the magnetic permeability in vacuum.
Complete step by step solution:
As there are two magnetic fields involved; one due to the current carrying coils, and the other due to the earth’s magnetic field, so the resultant magnetic field is the vector sum of the horizontal component of the earth’s magnetic field, and the field produced by the Helmholtz coils. We know that the total magnetic field produced by the coils of a Helmholtz galvanometer is given by
$B = \dfrac{{8{\mu _0}nI}}{{5\sqrt 5 R}} $ ……………...(1)
The vector diagram for the resultant magnetic field can be represented as below
We know that a magnetic field points in the direction of the resultant magnetic field, $ {B_N} $ . According to the question, the deflection of the magnetic needle is equal to $ {45^ \circ } $ . So we have from the above figure
$\theta = {45^ \circ } $
Also from the above figure
$\Rightarrow \tan \theta = \dfrac{B}{{{B_H}}} $
$\Rightarrow \tan {45^ \circ } = \dfrac{B}{{{B_H}}} $
We know that $ \tan {45^ \circ } = 1 $ . So we get
$\Rightarrow \dfrac{B}{{{B_H}}} = 1 $
$\Rightarrow B = {B_H} $
From (1)
$\Rightarrow \dfrac{{8{\mu _0}nI}}{{5\sqrt 5 R}} = {B_H} $
So we get the current in the coil as
$\Rightarrow I = \dfrac{{5\sqrt 5 R{B_H}}}{{8{\mu _0}n}} $ …………….(2)
Now, according to the question we have the radius of each coil $ r = 0.1m $ , the number of turns $ n = 25 $ , the value of the horizontal component of the earth’s magnetic field $ {B_H} = 0.314 \times {10^{ - 4}}T $ and as we know that $ {\mu _0} = 4\pi \times {10^{ - 7}} $ . Substituting these in (2) we get
$\Rightarrow I = \dfrac{{5\sqrt 5 \times 0.1 \times 0.314 \times {{10}^{ - 4}}}}{{8 \times 4\pi \times {{10}^{ - 7}} \times 25}} $
On solving, we finally get the current as,
$\Rightarrow I = 0.139{\text{A}} \approx {\text{0}}{\text{.14A}} $
Thus we get the value of the current equal to $ {\text{0}}{\text{.14A}} $ .
So the correct answer is option A.
Note:
We should not use the formula for the magnetic field which we have used in this solution as the value of the magnetic field on the common axis of the two coils at their mid point. And we also should not use the formula for the magnetic field at the centre of a circular current carrying loop, as it is due to a single coil.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Who gave the slogan Jai Hind ALal Bahadur Shastri BJawaharlal class 11 social science CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE