
The radius of gyration of a disc about its axis passing through its centre and perpendicular to its plane is
\[\begin{array}{l}
{\rm{A}}{\rm{. }}\dfrac{R}{{\sqrt 2 }}\\
{\rm{B}}{\rm{. }}\dfrac{R}{2}\\
{\rm{C}}{\rm{. }}\sqrt 2 R\\
{\rm{D}}{\rm{. }}2R
\end{array}\]
Answer
479.1k+ views
Hint: The radius of gyration of a body is equal to the square root of the ratio of moment of inertia and the total mass. We need the value of the moment of inertia of a circular disc from which the radius of gyration can be calculated easily.
Formula used:
The moment of inertia of a body is given as
$I = M{R^2}{\rm{ }}...{\rm{(i)}}$
Here I represent the moment of inertia, M is the total mass of the body and R is the distance of this mass from the axis of rotation.
The moment of inertia of a circular disc about its axis passing through its centre and perpendicular to its plane is given as
$I = \dfrac{{M{R^2}}}{2}{\rm{ }}...{\rm{(ii)}}$
The radius of gyration is given as
$K = \sqrt {\dfrac{I}{M}} {\rm{ }}...{\rm{(iii)}}$
Here K represents the radius of gyration.
Complete step by step solution:
The moment of inertia of a body can be expressed in terms of the radius of gyration. The radius of gyration of a body is defined as the distance at which we will obtain the same moment of inertia as that obtained from the mass distribution of the body as if all the mass of the body is concentrated. It is denoted by K and moment of inertia I is given in terms of K in the following way.
$\begin{array}{l}
I = M{K^2}\\
\Rightarrow K = \sqrt {\dfrac{I}{M}}
\end{array}$
We are given a circular disc. Let the radius of this circular disc be R while the mass of the disc be M. We know that the moment of inertia of a circular disc is given as
$I = \dfrac{{M{R^2}}}{2}$
Now we can calculate the radius of gyration of the circular disc easily by using equation (iii) in the following way.
$K = \sqrt {\dfrac{I}{M}} = \sqrt {\dfrac{{\dfrac{{M{R^2}}}{2}}}{M}} = \dfrac{R}{{\sqrt 2 }}$
This is the radius of gyration of the disc and hence the correct answer is option A.
Note: It should be noted that the value of moment of inertia is different for bodies of different shapes. The formulas for moment of inertia for other shapes like a rod and cylinder are given as follows:
\[\begin{array}{l}
{I_{rod}} = \dfrac{1}{{12}}M{r^2}\\
{I_{cylinder}} = \dfrac{1}{2}M{r^2}
\end{array}\]
Formula used:
The moment of inertia of a body is given as
$I = M{R^2}{\rm{ }}...{\rm{(i)}}$
Here I represent the moment of inertia, M is the total mass of the body and R is the distance of this mass from the axis of rotation.
The moment of inertia of a circular disc about its axis passing through its centre and perpendicular to its plane is given as
$I = \dfrac{{M{R^2}}}{2}{\rm{ }}...{\rm{(ii)}}$
The radius of gyration is given as
$K = \sqrt {\dfrac{I}{M}} {\rm{ }}...{\rm{(iii)}}$
Here K represents the radius of gyration.
Complete step by step solution:
The moment of inertia of a body can be expressed in terms of the radius of gyration. The radius of gyration of a body is defined as the distance at which we will obtain the same moment of inertia as that obtained from the mass distribution of the body as if all the mass of the body is concentrated. It is denoted by K and moment of inertia I is given in terms of K in the following way.
$\begin{array}{l}
I = M{K^2}\\
\Rightarrow K = \sqrt {\dfrac{I}{M}}
\end{array}$
We are given a circular disc. Let the radius of this circular disc be R while the mass of the disc be M. We know that the moment of inertia of a circular disc is given as
$I = \dfrac{{M{R^2}}}{2}$
Now we can calculate the radius of gyration of the circular disc easily by using equation (iii) in the following way.
$K = \sqrt {\dfrac{I}{M}} = \sqrt {\dfrac{{\dfrac{{M{R^2}}}{2}}}{M}} = \dfrac{R}{{\sqrt 2 }}$
This is the radius of gyration of the disc and hence the correct answer is option A.
Note: It should be noted that the value of moment of inertia is different for bodies of different shapes. The formulas for moment of inertia for other shapes like a rod and cylinder are given as follows:
\[\begin{array}{l}
{I_{rod}} = \dfrac{1}{{12}}M{r^2}\\
{I_{cylinder}} = \dfrac{1}{2}M{r^2}
\end{array}\]
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE

Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE

With reference to graphite and diamond which of the class 11 chemistry CBSE

Trending doubts
What are the elders in Goa nostalgic about class 11 social science CBSE

Formaldehyde at room temperature is ALiquid BGas CSolid class 11 chemistry CBSE

Define least count of vernier callipers How do you class 11 physics CBSE

Distinguish between Mitosis and Meiosis class 11 biology CBSE

Why are forests affected by wars class 11 social science CBSE

Explain zero factorial class 11 maths CBSE
