Answer
Verified
448.8k+ views
Hint:The given line is mentioned to be perpendicular to the disc. As the radius of gyration equals the radius of the disc, the required distance can be obtained using the parallel axis theorem. The parallel axis theorem gives the moment of inertia of the disc about the given line as the sum of the moment of inertia of the disc about an axis passing through its centre of mass and parallel to the given line and the product of its mass and the square of the required distance.
Formulas used:
-The moment of inertia of a disc about a perpendicular axis passing through its centre is given by, $I = \dfrac{{m{r^2}}}{2}$ where $m$ is the mass of the disc and $r$ is the radius of the disc.
-The moment of inertia of a body is given by, $I = m{k^2}$ where $m$ is the mass of the body and $k$ is the radius of gyration of the body.
Complete step by step answer.
Step 1: Sketch a figure representing the given line perpendicular to the disc and list the parameters of the given disc.
In the above figure, C represents the centre of the disc. AB is the line perpendicular to the disc at a distance $d$ from the centre. OP represents the axis passing through the centre of the disc and is perpendicular to the disc.
The radius of the disc is denoted by $r$ .
Let $k$ be the radius of gyration of the uniform disc. It is given that the radius of gyration about the axis AB equals the radius of the disc ie., $k = r$ .
Let $m$ be the mass of the disc.
The moment of inertia about the axis OP which is perpendicular to the disc and passing through the centre is known to be ${I_{OP}} = \dfrac{{m{r^2}}}{2}$ -------- (1)
Step 2: Express the moment of inertia of the disc about the axis AB using the parallel axis theorem.
The moment of inertia of the disc about the axis AB is usually expressed in terms of the radius of gyration as ${I_{AB}} = m{k^2}$
Since $k = r$ , we have ${I_{AB}} = m{r^2}$ --------- (2)
We can also express the moment of inertia about AB based on the parallel axis theorem as ${I_{AB}} = {I_{OP}} + m{d^2}$ ---------- (3)
Substituting equations (1) and (2) in (3) we get, $m{r^2} = \dfrac{{m{r^2}}}{2} + m{d^2}$
$ \Rightarrow \dfrac{{m{r^2}}}{2} = m{d^2}$
Cancelling $m$ on both sides of the above expression and rearranging we get, ${d^2} = \dfrac{{{r^2}}}{2}$
$ \Rightarrow d = \dfrac{r}{{\sqrt 2 }}$
Thus the distance from the centre to the axis AB is $d = \dfrac{r}{{\sqrt 2 }}$ .
Note:The radius of gyration is a geometric property of a body. It also depends on the position and configuration of the axis of rotation of the body. The centre of mass of the body is independent of the axis of rotation and it is fixed as the body rotates. However, the radius of gyration will change in response to the variations in the axis of rotation.
Formulas used:
-The moment of inertia of a disc about a perpendicular axis passing through its centre is given by, $I = \dfrac{{m{r^2}}}{2}$ where $m$ is the mass of the disc and $r$ is the radius of the disc.
-The moment of inertia of a body is given by, $I = m{k^2}$ where $m$ is the mass of the body and $k$ is the radius of gyration of the body.
Complete step by step answer.
Step 1: Sketch a figure representing the given line perpendicular to the disc and list the parameters of the given disc.
In the above figure, C represents the centre of the disc. AB is the line perpendicular to the disc at a distance $d$ from the centre. OP represents the axis passing through the centre of the disc and is perpendicular to the disc.
The radius of the disc is denoted by $r$ .
Let $k$ be the radius of gyration of the uniform disc. It is given that the radius of gyration about the axis AB equals the radius of the disc ie., $k = r$ .
Let $m$ be the mass of the disc.
The moment of inertia about the axis OP which is perpendicular to the disc and passing through the centre is known to be ${I_{OP}} = \dfrac{{m{r^2}}}{2}$ -------- (1)
Step 2: Express the moment of inertia of the disc about the axis AB using the parallel axis theorem.
The moment of inertia of the disc about the axis AB is usually expressed in terms of the radius of gyration as ${I_{AB}} = m{k^2}$
Since $k = r$ , we have ${I_{AB}} = m{r^2}$ --------- (2)
We can also express the moment of inertia about AB based on the parallel axis theorem as ${I_{AB}} = {I_{OP}} + m{d^2}$ ---------- (3)
Substituting equations (1) and (2) in (3) we get, $m{r^2} = \dfrac{{m{r^2}}}{2} + m{d^2}$
$ \Rightarrow \dfrac{{m{r^2}}}{2} = m{d^2}$
Cancelling $m$ on both sides of the above expression and rearranging we get, ${d^2} = \dfrac{{{r^2}}}{2}$
$ \Rightarrow d = \dfrac{r}{{\sqrt 2 }}$
Thus the distance from the centre to the axis AB is $d = \dfrac{r}{{\sqrt 2 }}$ .
Note:The radius of gyration is a geometric property of a body. It also depends on the position and configuration of the axis of rotation of the body. The centre of mass of the body is independent of the axis of rotation and it is fixed as the body rotates. However, the radius of gyration will change in response to the variations in the axis of rotation.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
A rainbow has circular shape because A The earth is class 11 physics CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
In Indian rupees 1 trillion is equal to how many c class 8 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
What is BLO What is the full form of BLO class 8 social science CBSE