Answer
Verified
500.7k+ views
Hint- Recall the formula for each interior angle of polygon with respect to the right angles present in it.
Since we have to tell about the number of sides of the second regular polygon hence let the number of sides of second polygon ${\text{ = n}}$
Now it is being given that the number of sides in the first polygon is twice the sides in the first polygon.
So the number of sides of the second polygon ${\text{ = 2n}}$
Now any n sided polygon can be divided into ${\text{(n - 2)}}$triangles. Now the sum of angles of a triangle is 180, therefore the sum of interior angles of a polygon having n sides is ${\text{(2n - 4)}}$right angles. Thus each interior angle of the polygon is $\left( {\dfrac{{2n - 4}}{n}} \right)$right angles.
Hence each interior of first polygon ${\text{ = }}\left( {\dfrac{{4n - 4}}{{2n}}} \right)$right angles
Interior angle of the second polygon $\left( {\dfrac{{2n - 4}}{n}} \right)$right angles
Now it’s given in problem that the angles are in the ratio 3: 4 so we can say that
$\left( {\dfrac{{4n - 4}}{{2n}}} \right):{\text{ }}\left( {\dfrac{{2n - 4}}{n}} \right) = 3:2$
Or
$\dfrac{{\left( {\dfrac{{4n - 4}}{{2n}}} \right)}}{{\left( {\dfrac{{2n - 4}}{n}} \right)}} = \dfrac{3}{2}$
On solving we get
${\text{2}}\left( {\left( {\dfrac{{4n - 4}}{2}} \right)} \right) = 3\left( {2n - 4} \right)$
That is ${\text{4n - 4 = 6n - 12}}$
On solving we get ${\text{n = 4}}$
Thus the number of sides in the first polygon is 8 and the second polygon is 4.
Note- Every time we encounter such problems the key concept involved is that the sum of interior angles of a polygon having n sides is ${\text{(2n - 4)}}$right angles. Thus each interior angle of the polygon is $\dfrac{{2n - 4}}{n}$angles.
Since we have to tell about the number of sides of the second regular polygon hence let the number of sides of second polygon ${\text{ = n}}$
Now it is being given that the number of sides in the first polygon is twice the sides in the first polygon.
So the number of sides of the second polygon ${\text{ = 2n}}$
Now any n sided polygon can be divided into ${\text{(n - 2)}}$triangles. Now the sum of angles of a triangle is 180, therefore the sum of interior angles of a polygon having n sides is ${\text{(2n - 4)}}$right angles. Thus each interior angle of the polygon is $\left( {\dfrac{{2n - 4}}{n}} \right)$right angles.
Hence each interior of first polygon ${\text{ = }}\left( {\dfrac{{4n - 4}}{{2n}}} \right)$right angles
Interior angle of the second polygon $\left( {\dfrac{{2n - 4}}{n}} \right)$right angles
Now it’s given in problem that the angles are in the ratio 3: 4 so we can say that
$\left( {\dfrac{{4n - 4}}{{2n}}} \right):{\text{ }}\left( {\dfrac{{2n - 4}}{n}} \right) = 3:2$
Or
$\dfrac{{\left( {\dfrac{{4n - 4}}{{2n}}} \right)}}{{\left( {\dfrac{{2n - 4}}{n}} \right)}} = \dfrac{3}{2}$
On solving we get
${\text{2}}\left( {\left( {\dfrac{{4n - 4}}{2}} \right)} \right) = 3\left( {2n - 4} \right)$
That is ${\text{4n - 4 = 6n - 12}}$
On solving we get ${\text{n = 4}}$
Thus the number of sides in the first polygon is 8 and the second polygon is 4.
Note- Every time we encounter such problems the key concept involved is that the sum of interior angles of a polygon having n sides is ${\text{(2n - 4)}}$right angles. Thus each interior angle of the polygon is $\dfrac{{2n - 4}}{n}$angles.
Recently Updated Pages
A particle is undergoing a horizontal circle of radius class 11 physics CBSE
A particle is thrown vertically upwards with a velocity class 11 physics CBSE
A particle is rotated in a vertical circle by connecting class 11 physics CBSE
A particle is projected with a velocity v such that class 11 physics CBSE
A particle is projected with a velocity u making an class 11 physics CBSE
A particle is projected vertically upwards and it reaches class 11 physics CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Who was the leader of the Bolshevik Party A Leon Trotsky class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Which is the largest saltwater lake in India A Chilika class 8 social science CBSE
Ghatikas during the period of Satavahanas were aHospitals class 6 social science CBSE