Answer
Verified
472.2k+ views
- Hint: Dimensional formula of a physical quantity can easily be calculated if the student knows the correct formula. The formula for Planck’s constant is \[h=\dfrac{E}{\nu }\] ,and for moment of inertia is \[I=M{{R}^{2}}\]
Complete step-by-step solution -
Firstly, we will calculate the dimensional formula of each physical quantity asked in the question.
Formula for Planck’s constant \[h\] is:
\[h=\dfrac{E}{\nu }\]
On writing the dimensional formula we get,
\[h=\dfrac{\left[ {{M}^{1}}{{L}^{2}}{{T}^{-2}} \right]}{\left[ {{M}^{0}}{{L}^{0}}{{T}^{-1}} \right]}\]
\[h=\left[ {{M}^{1}}{{L}^{2}}{{T}^{-1}} \right]\]
Now, formula for Moment of inertia \[I\] is:
\[I=M{{R}^{2}}\]
On writing the dimensional formula we get,
\[I=\left[ {{M}^{1}}{{L}^{2}}{{T}^{0}} \right]\]
Now, we take the ratio of dimensional formulas of \[h\] and \[I\]
We get,
\[\begin{align}
& \dfrac{h}{I}=\dfrac{\left[ {{M}^{1}}{{L}^{2}}{{T}^{-1}} \right]}{\left[ {{M}^{1}}{{L}^{2}}{{T}^{0}} \right]} \\
& \dfrac{h}{I}=\left[ {{M}^{0}}{{L}^{0}}{{T}^{-1}} \right] \\
\end{align}\]
Here \[\left[ {{M}^{0}}{{L}^{0}}{{T}^{-1}} \right]\] is dimensionally equal to the formula of frequency
So, the correct answer is A. Frequency
Additional Information:
Principle of homogeneity of dimensions comes in very handy while solving dimensional formula questions. According to the principle the powers of M,L,T on either side of the equation are always equal.
The SI units and Dimensional formula of some important physical quantities to remember are:
Work, Energy of all kinds = \[J,[{{M}^{1}}{{L}^{2}}{{T}^{-2}}]\]
Power =\[W,[{{M}^{1}}{{L}^{2}}{{T}^{-3}}]\]
Planck’s Constant (h) = \[Js,[{{M}^{1}}{{L}^{2}}{{T}^{-1}}]\]
Angular displacement (\[\theta\])=$rad,[{{M}^{0}}{{L}^{0}}{{T}^{0}}]$.
Angular velocity (\[\omega\])=\[rad{{s}^{-1}}[{{M}^{0}}{{L}^{0}}{{T}^{0}}]\]
Force constant ($\dfrac{\text{force}}{\text{displacement}}$) = $N{{m}^{-1}},\left[ {{M}^{1}}{{L}^{0}}{{T}^{-2}} \right]$
Coefficient of elasticity ($\dfrac{\text{stress}}{\text{strain}}$) = $N{{m}^{-2}},\left[ {{M}^{1}}{{L}^{-1}}{{T}^{-2}} \right]$
Angular frequency \[(\omega )=,rad{{s}^{-1}}[{{M}^{0}}{{L}^{0}}{{T}^{-1}}]\]
Angular momentum \[I\omega =kg{{m}^{2}}{{s}^{-1}}[{{M}^{1}}{{L}^{2}}{{T}^{-1}}]\]
Note: While solving dimensional formula questions students must note that every physical quantity must be expressed in its absolute units only. The MKS (meter- kilogram-second) system of units should be used instead of CGS (centimetre-gram-second) to get answers in the appropriate SI units.
Complete step-by-step solution -
Firstly, we will calculate the dimensional formula of each physical quantity asked in the question.
Formula for Planck’s constant \[h\] is:
\[h=\dfrac{E}{\nu }\]
On writing the dimensional formula we get,
\[h=\dfrac{\left[ {{M}^{1}}{{L}^{2}}{{T}^{-2}} \right]}{\left[ {{M}^{0}}{{L}^{0}}{{T}^{-1}} \right]}\]
\[h=\left[ {{M}^{1}}{{L}^{2}}{{T}^{-1}} \right]\]
Now, formula for Moment of inertia \[I\] is:
\[I=M{{R}^{2}}\]
On writing the dimensional formula we get,
\[I=\left[ {{M}^{1}}{{L}^{2}}{{T}^{0}} \right]\]
Now, we take the ratio of dimensional formulas of \[h\] and \[I\]
We get,
\[\begin{align}
& \dfrac{h}{I}=\dfrac{\left[ {{M}^{1}}{{L}^{2}}{{T}^{-1}} \right]}{\left[ {{M}^{1}}{{L}^{2}}{{T}^{0}} \right]} \\
& \dfrac{h}{I}=\left[ {{M}^{0}}{{L}^{0}}{{T}^{-1}} \right] \\
\end{align}\]
Here \[\left[ {{M}^{0}}{{L}^{0}}{{T}^{-1}} \right]\] is dimensionally equal to the formula of frequency
So, the correct answer is A. Frequency
Additional Information:
Principle of homogeneity of dimensions comes in very handy while solving dimensional formula questions. According to the principle the powers of M,L,T on either side of the equation are always equal.
The SI units and Dimensional formula of some important physical quantities to remember are:
Work, Energy of all kinds = \[J,[{{M}^{1}}{{L}^{2}}{{T}^{-2}}]\]
Power =\[W,[{{M}^{1}}{{L}^{2}}{{T}^{-3}}]\]
Planck’s Constant (h) = \[Js,[{{M}^{1}}{{L}^{2}}{{T}^{-1}}]\]
Angular displacement (\[\theta\])=$rad,[{{M}^{0}}{{L}^{0}}{{T}^{0}}]$.
Angular velocity (\[\omega\])=\[rad{{s}^{-1}}[{{M}^{0}}{{L}^{0}}{{T}^{0}}]\]
Force constant ($\dfrac{\text{force}}{\text{displacement}}$) = $N{{m}^{-1}},\left[ {{M}^{1}}{{L}^{0}}{{T}^{-2}} \right]$
Coefficient of elasticity ($\dfrac{\text{stress}}{\text{strain}}$) = $N{{m}^{-2}},\left[ {{M}^{1}}{{L}^{-1}}{{T}^{-2}} \right]$
Angular frequency \[(\omega )=,rad{{s}^{-1}}[{{M}^{0}}{{L}^{0}}{{T}^{-1}}]\]
Angular momentum \[I\omega =kg{{m}^{2}}{{s}^{-1}}[{{M}^{1}}{{L}^{2}}{{T}^{-1}}]\]
Note: While solving dimensional formula questions students must note that every physical quantity must be expressed in its absolute units only. The MKS (meter- kilogram-second) system of units should be used instead of CGS (centimetre-gram-second) to get answers in the appropriate SI units.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
In what year Guru Nanak Dev ji was born A15 April 1469 class 11 social science CBSE
A rainbow has circular shape because A The earth is class 11 physics CBSE
How do you graph the function fx 4x class 9 maths CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
In Indian rupees 1 trillion is equal to how many c class 8 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE