
The ratio of electric field vector E and magnetic field vector H, i.e, $\left( {\dfrac{E}{H}} \right)$ has the dimensions of
(A) Resistance.
(B) Inductance.
(C) Capacitance.
(D) The product of inductance and capacitance.
Answer
534.6k+ views
Hint: The dimension of electric field vector (E) is volt/meter and the dimension of magnetic field vector (H) is Ampere/meter. In the given question, we can use these dimensions of electric field factor (E) and magnetic field vector (H) to find the answer. Volt is the dimension of voltage and ampere is the dimension of current.
Complete step by step answer: The dimension of electric field vector (E) is volt/meter and the dimension of magnetic field vector (H) is Ampere/meter.
Therefore, the ratio of electric field vector and magnetic field vector is given as,
$\dfrac{E}{H} = \dfrac{{\dfrac{{volt}}{{meter}}}}{{\dfrac{{ampere}}{{meter}}}} = \dfrac{{volt}}{{ampere}}$
Thus, the ratio of electric field vector and magnetic field vector is volt/ampere.
Volt is the dimension of voltage and ampere is the dimension of current. Therefore, the ratio of electric field vector E and magnetic field vector H becomes voltage/current $\left( {\dfrac{V}{I}} \right)$
Now, according to Ohm’s law, voltage/current ($\left( {\dfrac{V}{I}} \right)$) is equal to the resistance.
Thus, $\left( {\dfrac{E}{H}} \right)$ has the dimensions of resistance.
Hence, option (A) is the correct option.
Note: In this question you are asked to find the ratio of electric field vector E and magnetic field vector H. To evaluate the given question student must remember the dimensions of the electric field vector and magnetic field vector, then after substituting these terms in the $\dfrac{E}{H}$ equation, we will get our desire result that is resistance.
Complete step by step answer: The dimension of electric field vector (E) is volt/meter and the dimension of magnetic field vector (H) is Ampere/meter.
Therefore, the ratio of electric field vector and magnetic field vector is given as,
$\dfrac{E}{H} = \dfrac{{\dfrac{{volt}}{{meter}}}}{{\dfrac{{ampere}}{{meter}}}} = \dfrac{{volt}}{{ampere}}$
Thus, the ratio of electric field vector and magnetic field vector is volt/ampere.
Volt is the dimension of voltage and ampere is the dimension of current. Therefore, the ratio of electric field vector E and magnetic field vector H becomes voltage/current $\left( {\dfrac{V}{I}} \right)$
Now, according to Ohm’s law, voltage/current ($\left( {\dfrac{V}{I}} \right)$) is equal to the resistance.
Thus, $\left( {\dfrac{E}{H}} \right)$ has the dimensions of resistance.
Hence, option (A) is the correct option.
Note: In this question you are asked to find the ratio of electric field vector E and magnetic field vector H. To evaluate the given question student must remember the dimensions of the electric field vector and magnetic field vector, then after substituting these terms in the $\dfrac{E}{H}$ equation, we will get our desire result that is resistance.
Recently Updated Pages
Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

State the principle of an ac generator and explain class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Sketch the electric field lines in case of an electric class 12 physics CBSE

Give 10 examples of unisexual and bisexual flowers

