![SearchIcon](https://vmkt.vedantu.com/vmkt/PROD/png/bdcdbbd8-08a7-4688-98e6-4aa54e5e0800-1733305962725-4102606384256179.png)
The ratio of force and acceleration is
A. Mass
B. Impulse
C. Momentum
D. None of these
Answer
389.4k+ views
Hint: In physics, force is defined as a push or pull. Newton's second law defines force as the rate of change of momentum. Acceleration is the rate of change of velocity. Here, we will discuss the relation between force and acceleration
Complete step by step solution:
According to newton's second law of motion, the rate of change of momentum equals the force applied i.e.
$f = \dfrac{{dp}}{{dt}}$
We also know that momentum is the product of mass and velocity of the object,i.e.
$p = mv$
Here, $p$ is momentum, $m$ is mass, and $v$ is the velocity of the object.
Let us now put these values in the above equation.
$f = \dfrac{{d\left( {mv} \right)}}{{dt}}$
At lower speed, the mass of an object is constant. So, we can take mass which is constant out of the differentiation.
$f = m\dfrac{{dv}}{{dt}}$
Now we know that the rate of change of velocity is acceleration. Therefore, we can write the above expression as below.
$f = ma$
Now, let us find the ratio of force and acceleration.
$\dfrac{f}{a} = m$
Therefore, we can say that the ratio of force and acceleration gives the mass of the object.
Hence, option (A) mass is correct.
Note:
The momentum of an object depends on the mass.
If the same force is acting on two objects of different masses, then the momentum gained by the lighter object will be higher than the momentum gained by the heavier object.
Also, the velocity achieved by a lighter object will be higher than the heavier object.
We define Impulse as when a large force acts on an object for a small interval of time.
Complete step by step solution:
According to newton's second law of motion, the rate of change of momentum equals the force applied i.e.
$f = \dfrac{{dp}}{{dt}}$
We also know that momentum is the product of mass and velocity of the object,i.e.
$p = mv$
Here, $p$ is momentum, $m$ is mass, and $v$ is the velocity of the object.
Let us now put these values in the above equation.
$f = \dfrac{{d\left( {mv} \right)}}{{dt}}$
At lower speed, the mass of an object is constant. So, we can take mass which is constant out of the differentiation.
$f = m\dfrac{{dv}}{{dt}}$
Now we know that the rate of change of velocity is acceleration. Therefore, we can write the above expression as below.
$f = ma$
Now, let us find the ratio of force and acceleration.
$\dfrac{f}{a} = m$
Therefore, we can say that the ratio of force and acceleration gives the mass of the object.
Hence, option (A) mass is correct.
Note:
The momentum of an object depends on the mass.
If the same force is acting on two objects of different masses, then the momentum gained by the lighter object will be higher than the momentum gained by the heavier object.
Also, the velocity achieved by a lighter object will be higher than the heavier object.
We define Impulse as when a large force acts on an object for a small interval of time.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Master Class 11 Economics: Engaging Questions & Answers for Success
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Master Class 11 Computer Science: Engaging Questions & Answers for Success
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Master Class 11 Business Studies: Engaging Questions & Answers for Success
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Master Class 11 Maths: Engaging Questions & Answers for Success
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Master Class 11 Social Science: Engaging Questions & Answers for Success
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Trending doubts
10 examples of friction in our daily life
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Difference Between Prokaryotic Cells and Eukaryotic Cells
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
State and prove Bernoullis theorem class 11 physics CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
What organs are located on the left side of your body class 11 biology CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
How many valence electrons does nitrogen have class 11 chemistry CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)