Answer
Verified
463.5k+ views
Hint: Concept conversion of one system of units into another as SI and CGS are the two different systems of units. To find the ratio, one must know their inter conversion.
$
{n_1}{u_1} = {n_2}{u_2} \\
\Rightarrow {n_1}\left[ {M_1^a{\text{ }}L_1^b{\text{ }}T_1^C} \right] = {n_2}\left[ {M_2^a{\text{ }}L_2^b{\text{ }}T_2^c} \right] \\
$
Complete step by step answer:
$ \to $ Conversion of one system of units into another is based upon the fact that the magnitude of a physical quantity remains the same, whatever may be the system of units.
$ \to $ We know that SI units of energy are joule (J) and cgs units of energy are erg
$ \to $ Dimensional formula of energy is
Energy $ = \dfrac{1}{2}m{v^2}$
$ = \left[ M \right]{\left[ {L{T^{ - 1}}} \right]^2}$…… (as$V = \dfrac{d}{t}$$v = \dfrac{L}{T} = L{T^{ - 1}}$)
Energy $ = \left[ {M{L^2}{T^{ - 2}}} \right]$
Now, ${n_1}\left[ {M_1^a{\text{ L}}_1^b{\text{ T}}_1^c} \right] = {n_2}\left[ {M_2^a{\text{ L}}_2^b{\text{ T}}_2^c} \right]$ …. (i)
Here, $a = 1,{\text{ b}} = 2,{\text{ c}} = - 2$
Here, $\left[ M \right]$ represent the dimensional formula of mass
$\left[ L \right]$ Represents the dimensional formula of length $\left[ T \right]$ represent the dimensional formula of time
Putting all these values in equation (i), we get
\[
{n_1}\left[ {M_1^a{\text{ L}}_1^b{\text{ T}}_1^c} \right] = {n_2}\left[ {M_2^a{\text{ L}}_2^b{\text{ T}}_2^c} \right] \\
{n_2} = {n_1}\left[ {\dfrac{{{M_1}}}{{{M_2}}}} \right]_2^a\left[ {\dfrac{{{L_1}}}{{{L_2}}}} \right]_{}^b{\left[ {\dfrac{{{T_1}}}{{{T_2}}}} \right]^c} \\
{n_2} = 1{\left[ {\dfrac{{1000g}}{{1g}}} \right]^1}{\left[ {\dfrac{{100cm}}{{1cm}}} \right]^2}{\left[ {\dfrac{{1\sec }}{{1\sec }}} \right]^{ - 2}} \\
{n_2} = 1 \times 1000 \times {\left( {100} \right)^2} \times {\left( 1 \right)^{ - 2}} \\
{n_2} = {10^7} \\
\]
On solving this, we have
So, $1$ Joule $ = {10^7}$ ergs
Ration of SI to CGS $ = \dfrac{{Joule}}{{erg}}$
Substituting the values of joules in ergs
$
= \dfrac{{{{10}^7}erg}}{{erg}} \\
= {10^7} \\
$
Note:
Remember that they have asked for a ratio of SI units of energy to the CGS units of energy, so the correct option is ${10^7}$ not${10^{ - 7}}$. Also, the dimensional formula of work done and all energies are the same.
$
{n_1}{u_1} = {n_2}{u_2} \\
\Rightarrow {n_1}\left[ {M_1^a{\text{ }}L_1^b{\text{ }}T_1^C} \right] = {n_2}\left[ {M_2^a{\text{ }}L_2^b{\text{ }}T_2^c} \right] \\
$
Complete step by step answer:
$ \to $ Conversion of one system of units into another is based upon the fact that the magnitude of a physical quantity remains the same, whatever may be the system of units.
$ \to $ We know that SI units of energy are joule (J) and cgs units of energy are erg
$ \to $ Dimensional formula of energy is
Energy $ = \dfrac{1}{2}m{v^2}$
$ = \left[ M \right]{\left[ {L{T^{ - 1}}} \right]^2}$…… (as$V = \dfrac{d}{t}$$v = \dfrac{L}{T} = L{T^{ - 1}}$)
Energy $ = \left[ {M{L^2}{T^{ - 2}}} \right]$
Now, ${n_1}\left[ {M_1^a{\text{ L}}_1^b{\text{ T}}_1^c} \right] = {n_2}\left[ {M_2^a{\text{ L}}_2^b{\text{ T}}_2^c} \right]$ …. (i)
Here, $a = 1,{\text{ b}} = 2,{\text{ c}} = - 2$
Here, $\left[ M \right]$ represent the dimensional formula of mass
$\left[ L \right]$ Represents the dimensional formula of length $\left[ T \right]$ represent the dimensional formula of time
SI | CGS |
${M_1} = 1kg = 1000g$ | ${M_2} = 1g$ |
${L_1} = 1m = 100cm$ | ${L_2} = 1cm$ |
${T_1} = 1\sec $ | ${T_2} = 1\sec $ |
${n_1} = 1$(joule) | ${n_2} = ?$ erg |
Putting all these values in equation (i), we get
\[
{n_1}\left[ {M_1^a{\text{ L}}_1^b{\text{ T}}_1^c} \right] = {n_2}\left[ {M_2^a{\text{ L}}_2^b{\text{ T}}_2^c} \right] \\
{n_2} = {n_1}\left[ {\dfrac{{{M_1}}}{{{M_2}}}} \right]_2^a\left[ {\dfrac{{{L_1}}}{{{L_2}}}} \right]_{}^b{\left[ {\dfrac{{{T_1}}}{{{T_2}}}} \right]^c} \\
{n_2} = 1{\left[ {\dfrac{{1000g}}{{1g}}} \right]^1}{\left[ {\dfrac{{100cm}}{{1cm}}} \right]^2}{\left[ {\dfrac{{1\sec }}{{1\sec }}} \right]^{ - 2}} \\
{n_2} = 1 \times 1000 \times {\left( {100} \right)^2} \times {\left( 1 \right)^{ - 2}} \\
{n_2} = {10^7} \\
\]
On solving this, we have
So, $1$ Joule $ = {10^7}$ ergs
Ration of SI to CGS $ = \dfrac{{Joule}}{{erg}}$
Substituting the values of joules in ergs
$
= \dfrac{{{{10}^7}erg}}{{erg}} \\
= {10^7} \\
$
Note:
Remember that they have asked for a ratio of SI units of energy to the CGS units of energy, so the correct option is ${10^7}$ not${10^{ - 7}}$. Also, the dimensional formula of work done and all energies are the same.
Recently Updated Pages
Write the IUPAC name of the given compound class 11 chemistry CBSE
Write the IUPAC name of the given compound class 11 chemistry CBSE
Write the IUPAC name of the given compound class 11 chemistry CBSE
Write the IUPAC name of the given compound class 11 chemistry CBSE
Write the IUPAC name of the given compound class 11 chemistry CBSE
Write the IUPAC name of the given compound class 11 chemistry CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The term ISWM refers to A Integrated Solid Waste Machine class 10 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Which is the longest day and shortest night in the class 11 sst CBSE
In a democracy the final decisionmaking power rests class 11 social science CBSE