The ratio of SI units to CGS units of G is
$\text{A}\text{. }{{10}^{3}}$
$\text{B}\text{. }{{10}^{2}}$
$\text{C}\text{. }{{10}^{-2}}$
$\text{D}\text{. }{{10}^{-3}}$
Answer
Verified
479.4k+ views
Hint: From the formula for the gravitational force between two point sized bodies, we get that $G=\dfrac{F{{r}^{2}}}{{{m}_{1}}{{m}_{2}}}$. Use this equation for G and find the SI and CGS units of G. 1N = ${{10}^{5}}$dyn, 1m = ${{10}^{2}}$cm and 1kg = ${{10}^{3}}$g, these relations will help in find the ratio of SI unit to CGS unit of G.
Complete step-by-step answer:
G is the universal gravitational constant. It is a proportionality constant used in the equation of the gravitational force between two point sized bodies that are separated by a distance d, i.e. $F=\dfrac{G{{m}_{1}}{{m}_{2}}}{{{r}^{2}}}$
$G=\dfrac{F{{r}^{2}}}{{{m}_{1}}{{m}_{2}}}$…. (i)
Let us find the SI units of the gravitational constant G by using equation (i).
The SI unit of force F is Newton (N).
The SI unit of distance r is metre (m).
The SI units of masses ${{m}_{1}}$ and ${{m}_{2}}$ is kilogram (kg).
Therefore, the SI unit of G is $\dfrac{N{{(m)}^{2}}}{kg\times kg}=\dfrac{N{{m}^{2}}}{k{{g}^{2}}}=N{{m}^{2}}k{{g}^{-2}}$ …. (ii)
Now, let us calculate the CGS unit of G.
The CGS unit of force F is dyne (dyn).
The CGS unit of distance r is centimetre (cm).
The CGS units of masses ${{m}_{1}}$ and ${{m}_{2}}$ is gram (g).
Therefore, the CGS unit of G is $\dfrac{dyn{{(cm)}^{2}}}{g\times g}=\dfrac{(dyn)c{{m}^{2}}}{{{g}^{2}}}=(dyn)c{{m}^{2}}{{g}^{-2}}$ …. (iii)
Now divide the Si unit (ii) of G by CGS unit (iii) of G.
$\dfrac{\text{SI unit of G}}{\text{CGS unit of G}}=\dfrac{N{{m}^{2}}k{{g}^{-2}}}{(dyn)c{{m}^{2}}{{g}^{-2}}}$ …. (iv).
1N = ${{10}^{5}}$dyn
1m = ${{10}^{2}}$cm
1kg = ${{10}^{3}}$g
Substitute the values of 1N, 1m and 1kg in equation (iv).
$\Rightarrow \dfrac{\text{SI unit of G}}{\text{CGS unit of G}}=\dfrac{\left( {{10}^{5}}dyn \right){{\left( {{10}^{2}}cm \right)}^{2}}{{\left( {{10}^{3}}g \right)}^{-2}}}{(dyn)c{{m}^{2}}{{g}^{-2}}}=\dfrac{\left( {{10}^{5}}dyn \right)\left( {{10}^{4}}c{{m}^{2}} \right)\left( {{10}^{-6}}{{g}^{-2}} \right)}{(dyn)c{{m}^{2}}{{g}^{-2}}}={{10}^{3}}$
This means that the ratio of the SI unit to CGS unit of G is ${{10}^{3}}$.
Hence, the correct option is A.
Note: If you do not know the relation between the units N and dyn, then convert the N into MKS units.
We force is equal to mass times acceleration.
Therefore, the unit of force is $kgm{{s}^{-2}}$.
This means that 1N = 1$kgm{{s}^{-2}}$.
Similarly, 1dyn = 1$gcm{{s}^{-2}}$.
This means that $\dfrac{1N}{1dyn}=\dfrac{1kgm{{s}^{-2}}}{1gcm{{s}^{-2}}}=\dfrac{({{10}^{3}}g)({{10}^{2}}cm){{s}^{-2}}}{1gcm{{s}^{-2}}}={{10}^{5}}$.
Hence, 1N = ${{10}^{5}}$dyn.
Complete step-by-step answer:
G is the universal gravitational constant. It is a proportionality constant used in the equation of the gravitational force between two point sized bodies that are separated by a distance d, i.e. $F=\dfrac{G{{m}_{1}}{{m}_{2}}}{{{r}^{2}}}$
$G=\dfrac{F{{r}^{2}}}{{{m}_{1}}{{m}_{2}}}$…. (i)
Let us find the SI units of the gravitational constant G by using equation (i).
The SI unit of force F is Newton (N).
The SI unit of distance r is metre (m).
The SI units of masses ${{m}_{1}}$ and ${{m}_{2}}$ is kilogram (kg).
Therefore, the SI unit of G is $\dfrac{N{{(m)}^{2}}}{kg\times kg}=\dfrac{N{{m}^{2}}}{k{{g}^{2}}}=N{{m}^{2}}k{{g}^{-2}}$ …. (ii)
Now, let us calculate the CGS unit of G.
The CGS unit of force F is dyne (dyn).
The CGS unit of distance r is centimetre (cm).
The CGS units of masses ${{m}_{1}}$ and ${{m}_{2}}$ is gram (g).
Therefore, the CGS unit of G is $\dfrac{dyn{{(cm)}^{2}}}{g\times g}=\dfrac{(dyn)c{{m}^{2}}}{{{g}^{2}}}=(dyn)c{{m}^{2}}{{g}^{-2}}$ …. (iii)
Now divide the Si unit (ii) of G by CGS unit (iii) of G.
$\dfrac{\text{SI unit of G}}{\text{CGS unit of G}}=\dfrac{N{{m}^{2}}k{{g}^{-2}}}{(dyn)c{{m}^{2}}{{g}^{-2}}}$ …. (iv).
1N = ${{10}^{5}}$dyn
1m = ${{10}^{2}}$cm
1kg = ${{10}^{3}}$g
Substitute the values of 1N, 1m and 1kg in equation (iv).
$\Rightarrow \dfrac{\text{SI unit of G}}{\text{CGS unit of G}}=\dfrac{\left( {{10}^{5}}dyn \right){{\left( {{10}^{2}}cm \right)}^{2}}{{\left( {{10}^{3}}g \right)}^{-2}}}{(dyn)c{{m}^{2}}{{g}^{-2}}}=\dfrac{\left( {{10}^{5}}dyn \right)\left( {{10}^{4}}c{{m}^{2}} \right)\left( {{10}^{-6}}{{g}^{-2}} \right)}{(dyn)c{{m}^{2}}{{g}^{-2}}}={{10}^{3}}$
This means that the ratio of the SI unit to CGS unit of G is ${{10}^{3}}$.
Hence, the correct option is A.
Note: If you do not know the relation between the units N and dyn, then convert the N into MKS units.
We force is equal to mass times acceleration.
Therefore, the unit of force is $kgm{{s}^{-2}}$.
This means that 1N = 1$kgm{{s}^{-2}}$.
Similarly, 1dyn = 1$gcm{{s}^{-2}}$.
This means that $\dfrac{1N}{1dyn}=\dfrac{1kgm{{s}^{-2}}}{1gcm{{s}^{-2}}}=\dfrac{({{10}^{3}}g)({{10}^{2}}cm){{s}^{-2}}}{1gcm{{s}^{-2}}}={{10}^{5}}$.
Hence, 1N = ${{10}^{5}}$dyn.
Recently Updated Pages
Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE
The highest possible oxidation states of Uranium and class 11 chemistry CBSE
Find the value of x if the mode of the following data class 11 maths CBSE
Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE
A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE
Statement I Reactivity of aluminium decreases when class 11 chemistry CBSE
Trending doubts
10 examples of friction in our daily life
Difference Between Prokaryotic Cells and Eukaryotic Cells
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
State and prove Bernoullis theorem class 11 physics CBSE
What organs are located on the left side of your body class 11 biology CBSE
Define least count of vernier callipers How do you class 11 physics CBSE