The ratio of the number of sides of two regular polygons is 5 : 4 and the difference of their exterior angles is ${9^ \circ }$ . Find the number of sides of both the polygons.
Answer
Verified
509.4k+ views
Hint: Considering n be the greatest common divisor(GCD).Then one polygon has 5n sides,while other has 4n sides and we have to calculate the exterior angle of polygon of 5n-sides and 4n-sides and find their differences
“Complete step-by-step answer:”
Let n be the greatest common divisor (GCD) of the numbers under the question.
Then one polygon has 5n sides, while other has 4n sides
It is well known fact that the sum of exterior angles of each polygon is ${360^ \circ }$
So, the exterior angle of the regular 5n-sided polygon is $\dfrac{{{{360}^ \circ }}}{{5n}}$
Similarly, the exterior angle of the regular 4n-sided polygon is $\dfrac{{{{360}^ \circ }}}{{4n}}$
According to question it is given that difference between the corresponding exterior angles is ${9^ \circ }$
$ \Rightarrow \dfrac{{{{360}^ \circ }}}{{4n}} - \dfrac{{{{360}^ \circ }}}{{5n}} = {9^ \circ }$
$ \Rightarrow \dfrac{{5n - 4n}}{{20{n^2}}} = \dfrac{9}{{360}} = \dfrac{1}{{40}}$
$ \Rightarrow 20n = 40$
$ \Rightarrow n = 2$
So, number of sides in one polygon = $5n = 5 \times 2 = 10$
And number of sides in another polygon $ = 4n = 4 \times 2 = 8$
So this is your answer
NOTE: Whenever we face such a problem the key concept is that we have to remember the exterior angle formula for n sided polygon it will help you in finding your desired answer.
“Complete step-by-step answer:”
Let n be the greatest common divisor (GCD) of the numbers under the question.
Then one polygon has 5n sides, while other has 4n sides
It is well known fact that the sum of exterior angles of each polygon is ${360^ \circ }$
So, the exterior angle of the regular 5n-sided polygon is $\dfrac{{{{360}^ \circ }}}{{5n}}$
Similarly, the exterior angle of the regular 4n-sided polygon is $\dfrac{{{{360}^ \circ }}}{{4n}}$
According to question it is given that difference between the corresponding exterior angles is ${9^ \circ }$
$ \Rightarrow \dfrac{{{{360}^ \circ }}}{{4n}} - \dfrac{{{{360}^ \circ }}}{{5n}} = {9^ \circ }$
$ \Rightarrow \dfrac{{5n - 4n}}{{20{n^2}}} = \dfrac{9}{{360}} = \dfrac{1}{{40}}$
$ \Rightarrow 20n = 40$
$ \Rightarrow n = 2$
So, number of sides in one polygon = $5n = 5 \times 2 = 10$
And number of sides in another polygon $ = 4n = 4 \times 2 = 8$
So this is your answer
NOTE: Whenever we face such a problem the key concept is that we have to remember the exterior angle formula for n sided polygon it will help you in finding your desired answer.
Recently Updated Pages
Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE
The highest possible oxidation states of Uranium and class 11 chemistry CBSE
Find the value of x if the mode of the following data class 11 maths CBSE
Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE
A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE
Statement I Reactivity of aluminium decreases when class 11 chemistry CBSE
Trending doubts
10 examples of friction in our daily life
The correct order of melting point of 14th group elements class 11 chemistry CBSE
Difference Between Prokaryotic Cells and Eukaryotic Cells
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
State and prove Bernoullis theorem class 11 physics CBSE
What organs are located on the left side of your body class 11 biology CBSE