Answer
Verified
465.6k+ views
Hint:
First, we will assume that the components after rotation be \[x'\] and \[y'\] respectively, such that we have \[x' = x\cos \theta + y\sin \theta \] and \[y' = y\cos \theta - x\sin \theta \]. Then we will find these values from the problem and then substitute the values in the assumed expression to find the value of \[p\].
Complete step by step solution:
We are given that the rectangular components of a vector lying in \[xy\] plane are 1 and \[p + 1\].
Let us assume that the components after rotation be \[x'\] and \[y'\] respectively, such that we have
\[x' = x\cos \theta + y\sin \theta \]
\[y' = y\cos \theta - x\sin \theta \]
Since we are given that when \[\theta = 30^\circ \], the coordinates are \[p\] and 4.
Finding the value of \[x\], \[y\], \[x'\] and \[y'\], we get
\[x = 1\]
\[y = p + 1\]
\[x' = p\]
\[y' = 4\]
Substituting these above values \[x\], \[y\] and \[x'\] in the equation for \[x'\], we get
\[
\Rightarrow p = 1 \cdot \cos 30^\circ + \left( {p + 1} \right)\sin 30^\circ \\
\Rightarrow p = \cos 30^\circ + \left( {p + 1} \right)\sin 30^\circ \\
\]
Using the value of \[\cos 30^\circ = \dfrac{{\sqrt 3 }}{2}\] and \[\sin 30^\circ = \dfrac{1}{2}\] in the above equation, we get
\[ \Rightarrow p = \dfrac{{\sqrt 3 }}{2} + \dfrac{{\left( {p + 1} \right)}}{2}\]
Substituting these above values \[x\], \[y\] and \[y'\] in the equation for \[y'\], we get
\[
\Rightarrow 4 = \left( {p + 1} \right)\cos 30^\circ - 1 \cdot \sin 30^\circ \\
\Rightarrow 4 = \left( {p + 1} \right)\cos 30^\circ - \sin 30^\circ \\
\]
Using the value of \[\cos 30^\circ = \dfrac{{\sqrt 3 }}{2}\] and \[\sin 30^\circ = \dfrac{1}{2}\] in the above equation, we get
\[ \Rightarrow 4 = \dfrac{{\left( {p + 1} \right)\sqrt 3 }}{2} - \dfrac{1}{2}\]
Multiplying the above equation by 2 on both sides, we get
\[
\Rightarrow 4 \cdot 2 = 2\left( {\dfrac{{\left( {p + 1} \right)\sqrt 3 }}{2} - \dfrac{1}{2}} \right) \\
\Rightarrow 8 = \left( {p + 1} \right)\sqrt 3 - 1 \\
\Rightarrow 8 = p\sqrt 3 + \sqrt 3 - 1 \\
\]
Adding the above equation with 1 on both sides, we get
\[
\Rightarrow 8 + 1 = p\sqrt 3 + \sqrt 3 - 1 + 1 \\
\Rightarrow 9 = p\sqrt 3 + \sqrt 3 \\
\]
Taking \[\sqrt 3 \] common from the right hand side of the above equation, we get
\[ \Rightarrow 9 = \left( {p + 1} \right)\sqrt 3 \]
Dividing the above equation by \[\sqrt 3 \] on both sides, we get
\[
\Rightarrow \dfrac{9}{{\sqrt 3 }} = \dfrac{{\left( {p + 1} \right)\sqrt 3 }}{{\sqrt 3 }} \\
\Rightarrow \dfrac{9}{{\sqrt 3 }} = p + 1 \\
\]
Rationalizing the left hand side of the above equation by multiplying \[\sqrt 3 \] with numerator and denominator, we get
\[
\Rightarrow \dfrac{{9 \times \sqrt 3 }}{{\sqrt 3 \times \sqrt 3 }} = p + 1 \\
\Rightarrow \dfrac{{9 \times \sqrt 3 }}{3} = p + 1 \\
\Rightarrow 3\sqrt 3 = p + 1 \\
\]
Subtracting the above equation by 1 on both sides, we get
\[
\Rightarrow 3\sqrt 3 - 1 = p + 1 - 1 \\
\Rightarrow 3\sqrt 3 - 1 = p \\
\Rightarrow p = 3\sqrt 3 - 1 \\
\Rightarrow p = 4 \\
\]
Hence, option B is correct.
Note:
We need to know that rectangular components are from a vector, one for the \[x\]–axis and the second one for the \[y\]–axis. Students should use the values of trigonometric functions really carefully. Some angles can also be resolved along with these vectors. If \[A\] is a vector then its \[x\] component is \[Ax\] and its \[y\] component is \[Ay\].
First, we will assume that the components after rotation be \[x'\] and \[y'\] respectively, such that we have \[x' = x\cos \theta + y\sin \theta \] and \[y' = y\cos \theta - x\sin \theta \]. Then we will find these values from the problem and then substitute the values in the assumed expression to find the value of \[p\].
Complete step by step solution:
We are given that the rectangular components of a vector lying in \[xy\] plane are 1 and \[p + 1\].
Let us assume that the components after rotation be \[x'\] and \[y'\] respectively, such that we have
\[x' = x\cos \theta + y\sin \theta \]
\[y' = y\cos \theta - x\sin \theta \]
Since we are given that when \[\theta = 30^\circ \], the coordinates are \[p\] and 4.
Finding the value of \[x\], \[y\], \[x'\] and \[y'\], we get
\[x = 1\]
\[y = p + 1\]
\[x' = p\]
\[y' = 4\]
Substituting these above values \[x\], \[y\] and \[x'\] in the equation for \[x'\], we get
\[
\Rightarrow p = 1 \cdot \cos 30^\circ + \left( {p + 1} \right)\sin 30^\circ \\
\Rightarrow p = \cos 30^\circ + \left( {p + 1} \right)\sin 30^\circ \\
\]
Using the value of \[\cos 30^\circ = \dfrac{{\sqrt 3 }}{2}\] and \[\sin 30^\circ = \dfrac{1}{2}\] in the above equation, we get
\[ \Rightarrow p = \dfrac{{\sqrt 3 }}{2} + \dfrac{{\left( {p + 1} \right)}}{2}\]
Substituting these above values \[x\], \[y\] and \[y'\] in the equation for \[y'\], we get
\[
\Rightarrow 4 = \left( {p + 1} \right)\cos 30^\circ - 1 \cdot \sin 30^\circ \\
\Rightarrow 4 = \left( {p + 1} \right)\cos 30^\circ - \sin 30^\circ \\
\]
Using the value of \[\cos 30^\circ = \dfrac{{\sqrt 3 }}{2}\] and \[\sin 30^\circ = \dfrac{1}{2}\] in the above equation, we get
\[ \Rightarrow 4 = \dfrac{{\left( {p + 1} \right)\sqrt 3 }}{2} - \dfrac{1}{2}\]
Multiplying the above equation by 2 on both sides, we get
\[
\Rightarrow 4 \cdot 2 = 2\left( {\dfrac{{\left( {p + 1} \right)\sqrt 3 }}{2} - \dfrac{1}{2}} \right) \\
\Rightarrow 8 = \left( {p + 1} \right)\sqrt 3 - 1 \\
\Rightarrow 8 = p\sqrt 3 + \sqrt 3 - 1 \\
\]
Adding the above equation with 1 on both sides, we get
\[
\Rightarrow 8 + 1 = p\sqrt 3 + \sqrt 3 - 1 + 1 \\
\Rightarrow 9 = p\sqrt 3 + \sqrt 3 \\
\]
Taking \[\sqrt 3 \] common from the right hand side of the above equation, we get
\[ \Rightarrow 9 = \left( {p + 1} \right)\sqrt 3 \]
Dividing the above equation by \[\sqrt 3 \] on both sides, we get
\[
\Rightarrow \dfrac{9}{{\sqrt 3 }} = \dfrac{{\left( {p + 1} \right)\sqrt 3 }}{{\sqrt 3 }} \\
\Rightarrow \dfrac{9}{{\sqrt 3 }} = p + 1 \\
\]
Rationalizing the left hand side of the above equation by multiplying \[\sqrt 3 \] with numerator and denominator, we get
\[
\Rightarrow \dfrac{{9 \times \sqrt 3 }}{{\sqrt 3 \times \sqrt 3 }} = p + 1 \\
\Rightarrow \dfrac{{9 \times \sqrt 3 }}{3} = p + 1 \\
\Rightarrow 3\sqrt 3 = p + 1 \\
\]
Subtracting the above equation by 1 on both sides, we get
\[
\Rightarrow 3\sqrt 3 - 1 = p + 1 - 1 \\
\Rightarrow 3\sqrt 3 - 1 = p \\
\Rightarrow p = 3\sqrt 3 - 1 \\
\Rightarrow p = 4 \\
\]
Hence, option B is correct.
Note:
We need to know that rectangular components are from a vector, one for the \[x\]–axis and the second one for the \[y\]–axis. Students should use the values of trigonometric functions really carefully. Some angles can also be resolved along with these vectors. If \[A\] is a vector then its \[x\] component is \[Ax\] and its \[y\] component is \[Ay\].
Recently Updated Pages
How is Abiogenesis Theory Disproved Experimentally?
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Master Class 9 Science: Engaging Questions & Answers for Success
Master Class 9 English: Engaging Questions & Answers for Success
Class 9 Question and Answer - Your Ultimate Solutions Guide
Master Class 9 Maths: Engaging Questions & Answers for Success
Trending doubts
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
What are the major means of transport Explain each class 12 social science CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Explain sex determination in humans with the help of class 12 biology CBSE
How much time does it take to bleed after eating p class 12 biology CBSE