Answer
Verified
450.9k+ views
Hint:
First, we will assume that the components after rotation be \[x'\] and \[y'\] respectively, such that we have \[x' = x\cos \theta + y\sin \theta \] and \[y' = y\cos \theta - x\sin \theta \]. Then we will find these values from the problem and then substitute the values in the assumed expression to find the value of \[p\].
Complete step by step solution:
We are given that the rectangular components of a vector lying in \[xy\] plane are 1 and \[p + 1\].
Let us assume that the components after rotation be \[x'\] and \[y'\] respectively, such that we have
\[x' = x\cos \theta + y\sin \theta \]
\[y' = y\cos \theta - x\sin \theta \]
Since we are given that when \[\theta = 30^\circ \], the coordinates are \[p\] and 4.
Finding the value of \[x\], \[y\], \[x'\] and \[y'\], we get
\[x = 1\]
\[y = p + 1\]
\[x' = p\]
\[y' = 4\]
Substituting these above values \[x\], \[y\] and \[x'\] in the equation for \[x'\], we get
\[
\Rightarrow p = 1 \cdot \cos 30^\circ + \left( {p + 1} \right)\sin 30^\circ \\
\Rightarrow p = \cos 30^\circ + \left( {p + 1} \right)\sin 30^\circ \\
\]
Using the value of \[\cos 30^\circ = \dfrac{{\sqrt 3 }}{2}\] and \[\sin 30^\circ = \dfrac{1}{2}\] in the above equation, we get
\[ \Rightarrow p = \dfrac{{\sqrt 3 }}{2} + \dfrac{{\left( {p + 1} \right)}}{2}\]
Substituting these above values \[x\], \[y\] and \[y'\] in the equation for \[y'\], we get
\[
\Rightarrow 4 = \left( {p + 1} \right)\cos 30^\circ - 1 \cdot \sin 30^\circ \\
\Rightarrow 4 = \left( {p + 1} \right)\cos 30^\circ - \sin 30^\circ \\
\]
Using the value of \[\cos 30^\circ = \dfrac{{\sqrt 3 }}{2}\] and \[\sin 30^\circ = \dfrac{1}{2}\] in the above equation, we get
\[ \Rightarrow 4 = \dfrac{{\left( {p + 1} \right)\sqrt 3 }}{2} - \dfrac{1}{2}\]
Multiplying the above equation by 2 on both sides, we get
\[
\Rightarrow 4 \cdot 2 = 2\left( {\dfrac{{\left( {p + 1} \right)\sqrt 3 }}{2} - \dfrac{1}{2}} \right) \\
\Rightarrow 8 = \left( {p + 1} \right)\sqrt 3 - 1 \\
\Rightarrow 8 = p\sqrt 3 + \sqrt 3 - 1 \\
\]
Adding the above equation with 1 on both sides, we get
\[
\Rightarrow 8 + 1 = p\sqrt 3 + \sqrt 3 - 1 + 1 \\
\Rightarrow 9 = p\sqrt 3 + \sqrt 3 \\
\]
Taking \[\sqrt 3 \] common from the right hand side of the above equation, we get
\[ \Rightarrow 9 = \left( {p + 1} \right)\sqrt 3 \]
Dividing the above equation by \[\sqrt 3 \] on both sides, we get
\[
\Rightarrow \dfrac{9}{{\sqrt 3 }} = \dfrac{{\left( {p + 1} \right)\sqrt 3 }}{{\sqrt 3 }} \\
\Rightarrow \dfrac{9}{{\sqrt 3 }} = p + 1 \\
\]
Rationalizing the left hand side of the above equation by multiplying \[\sqrt 3 \] with numerator and denominator, we get
\[
\Rightarrow \dfrac{{9 \times \sqrt 3 }}{{\sqrt 3 \times \sqrt 3 }} = p + 1 \\
\Rightarrow \dfrac{{9 \times \sqrt 3 }}{3} = p + 1 \\
\Rightarrow 3\sqrt 3 = p + 1 \\
\]
Subtracting the above equation by 1 on both sides, we get
\[
\Rightarrow 3\sqrt 3 - 1 = p + 1 - 1 \\
\Rightarrow 3\sqrt 3 - 1 = p \\
\Rightarrow p = 3\sqrt 3 - 1 \\
\Rightarrow p = 4 \\
\]
Hence, option B is correct.
Note:
We need to know that rectangular components are from a vector, one for the \[x\]–axis and the second one for the \[y\]–axis. Students should use the values of trigonometric functions really carefully. Some angles can also be resolved along with these vectors. If \[A\] is a vector then its \[x\] component is \[Ax\] and its \[y\] component is \[Ay\].
First, we will assume that the components after rotation be \[x'\] and \[y'\] respectively, such that we have \[x' = x\cos \theta + y\sin \theta \] and \[y' = y\cos \theta - x\sin \theta \]. Then we will find these values from the problem and then substitute the values in the assumed expression to find the value of \[p\].
Complete step by step solution:
We are given that the rectangular components of a vector lying in \[xy\] plane are 1 and \[p + 1\].
Let us assume that the components after rotation be \[x'\] and \[y'\] respectively, such that we have
\[x' = x\cos \theta + y\sin \theta \]
\[y' = y\cos \theta - x\sin \theta \]
Since we are given that when \[\theta = 30^\circ \], the coordinates are \[p\] and 4.
Finding the value of \[x\], \[y\], \[x'\] and \[y'\], we get
\[x = 1\]
\[y = p + 1\]
\[x' = p\]
\[y' = 4\]
Substituting these above values \[x\], \[y\] and \[x'\] in the equation for \[x'\], we get
\[
\Rightarrow p = 1 \cdot \cos 30^\circ + \left( {p + 1} \right)\sin 30^\circ \\
\Rightarrow p = \cos 30^\circ + \left( {p + 1} \right)\sin 30^\circ \\
\]
Using the value of \[\cos 30^\circ = \dfrac{{\sqrt 3 }}{2}\] and \[\sin 30^\circ = \dfrac{1}{2}\] in the above equation, we get
\[ \Rightarrow p = \dfrac{{\sqrt 3 }}{2} + \dfrac{{\left( {p + 1} \right)}}{2}\]
Substituting these above values \[x\], \[y\] and \[y'\] in the equation for \[y'\], we get
\[
\Rightarrow 4 = \left( {p + 1} \right)\cos 30^\circ - 1 \cdot \sin 30^\circ \\
\Rightarrow 4 = \left( {p + 1} \right)\cos 30^\circ - \sin 30^\circ \\
\]
Using the value of \[\cos 30^\circ = \dfrac{{\sqrt 3 }}{2}\] and \[\sin 30^\circ = \dfrac{1}{2}\] in the above equation, we get
\[ \Rightarrow 4 = \dfrac{{\left( {p + 1} \right)\sqrt 3 }}{2} - \dfrac{1}{2}\]
Multiplying the above equation by 2 on both sides, we get
\[
\Rightarrow 4 \cdot 2 = 2\left( {\dfrac{{\left( {p + 1} \right)\sqrt 3 }}{2} - \dfrac{1}{2}} \right) \\
\Rightarrow 8 = \left( {p + 1} \right)\sqrt 3 - 1 \\
\Rightarrow 8 = p\sqrt 3 + \sqrt 3 - 1 \\
\]
Adding the above equation with 1 on both sides, we get
\[
\Rightarrow 8 + 1 = p\sqrt 3 + \sqrt 3 - 1 + 1 \\
\Rightarrow 9 = p\sqrt 3 + \sqrt 3 \\
\]
Taking \[\sqrt 3 \] common from the right hand side of the above equation, we get
\[ \Rightarrow 9 = \left( {p + 1} \right)\sqrt 3 \]
Dividing the above equation by \[\sqrt 3 \] on both sides, we get
\[
\Rightarrow \dfrac{9}{{\sqrt 3 }} = \dfrac{{\left( {p + 1} \right)\sqrt 3 }}{{\sqrt 3 }} \\
\Rightarrow \dfrac{9}{{\sqrt 3 }} = p + 1 \\
\]
Rationalizing the left hand side of the above equation by multiplying \[\sqrt 3 \] with numerator and denominator, we get
\[
\Rightarrow \dfrac{{9 \times \sqrt 3 }}{{\sqrt 3 \times \sqrt 3 }} = p + 1 \\
\Rightarrow \dfrac{{9 \times \sqrt 3 }}{3} = p + 1 \\
\Rightarrow 3\sqrt 3 = p + 1 \\
\]
Subtracting the above equation by 1 on both sides, we get
\[
\Rightarrow 3\sqrt 3 - 1 = p + 1 - 1 \\
\Rightarrow 3\sqrt 3 - 1 = p \\
\Rightarrow p = 3\sqrt 3 - 1 \\
\Rightarrow p = 4 \\
\]
Hence, option B is correct.
Note:
We need to know that rectangular components are from a vector, one for the \[x\]–axis and the second one for the \[y\]–axis. Students should use the values of trigonometric functions really carefully. Some angles can also be resolved along with these vectors. If \[A\] is a vector then its \[x\] component is \[Ax\] and its \[y\] component is \[Ay\].
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Who gave the slogan Jai Hind ALal Bahadur Shastri BJawaharlal class 11 social science CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE