Answer
Verified
463.8k+ views
Hint: This problem can be solved using Snell's law. Snell’s law describes the relation between angle of refraction and angle of incidence. Substitute the values in Snell’s law and obtain the value for angle of refraction. Angle of minimum deviation is twice the angle of refraction. So. Multiply the obtained value for angle of refraction by 2. This obtained value will be the refracting angle of the prism to suffer minimum deviation.
Complete answer:
Given: Incident angle (i)= 50°
Refractive index of prism ($\mu$)= 1.5
Snell’s law is given by,
$\mu = \dfrac {\sin {i}} {\sin {r}}$
Substituting the given values in above equation we get,
$\Rightarrow 1.5 =\dfrac {\sin {50}} {\sin {r}}$
$\Rightarrow \sin {r} = \dfrac {\sin {i}}{1.5}$
$\Rightarrow \sin {r} = \dfrac {0.766}{1.5}$
$\Rightarrow \sin {r}= 0.510$
$\Rightarrow r= {\sin}^{-1}{(0.510)}$
$\Rightarrow r= 30.66°$
Now, the angle of minimum deviation is twice the angle of refraction.
$\therefore {\delta}_{m} = 2r$
Substituting the values in above equation we get,
${\delta}_{m} = 2 \times 30.66°$
$\Rightarrow {\delta}_{m} = 61.32°$
Hence, the refracting angle of the prism for minimum deviation should be 61.32°.
Note:
There are few conditions which are satisfied for minimum deviation through the prism. The conditions are as follows:
1.The angle of emergence should be equal to the angle of incident.
2.The ray passing through the prism should be parallel to the base of the prism.
3.The incident ray should be refracted parallel to the side opposite to the angle of the prism.
If the minimum deviation is equal to the refracting angle then the angle of prism and refraction angles will also be equal.
Complete answer:
Given: Incident angle (i)= 50°
Refractive index of prism ($\mu$)= 1.5
Snell’s law is given by,
$\mu = \dfrac {\sin {i}} {\sin {r}}$
Substituting the given values in above equation we get,
$\Rightarrow 1.5 =\dfrac {\sin {50}} {\sin {r}}$
$\Rightarrow \sin {r} = \dfrac {\sin {i}}{1.5}$
$\Rightarrow \sin {r} = \dfrac {0.766}{1.5}$
$\Rightarrow \sin {r}= 0.510$
$\Rightarrow r= {\sin}^{-1}{(0.510)}$
$\Rightarrow r= 30.66°$
Now, the angle of minimum deviation is twice the angle of refraction.
$\therefore {\delta}_{m} = 2r$
Substituting the values in above equation we get,
${\delta}_{m} = 2 \times 30.66°$
$\Rightarrow {\delta}_{m} = 61.32°$
Hence, the refracting angle of the prism for minimum deviation should be 61.32°.
Note:
There are few conditions which are satisfied for minimum deviation through the prism. The conditions are as follows:
1.The angle of emergence should be equal to the angle of incident.
2.The ray passing through the prism should be parallel to the base of the prism.
3.The incident ray should be refracted parallel to the side opposite to the angle of the prism.
If the minimum deviation is equal to the refracting angle then the angle of prism and refraction angles will also be equal.
Recently Updated Pages
For the circuit shown in figure the equivalent capacitance class 12 physics JEE_Main
The following compounds can be distinguished by class 12 chemistry JEE_Main
Which of the following is a redox reaction class null chemistry null
A conducting circular loop of radius r carries a constant class 12 physics JEE_Main
Two forms of Dglucopyranose are called class 12 chemistry JEE_Main
A long cylindrical shell carries positive surface charge class 12 physics JEE_Main
Trending doubts
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Explain sex determination in humans with the help of class 12 biology CBSE
How much time does it take to bleed after eating p class 12 biology CBSE
Distinguish between asexual and sexual reproduction class 12 biology CBSE