Answer
Verified
465.3k+ views
Hint: The ratio of the magnitudes of electric and magnetic fields equals the speed of light in free space.
Formula used:
In free space, where there is no charge or current, the four Maxwell’s equations are of the following form:
\[
\overset{\to }{\mathop{\nabla }}\,\cdot \overset{\to }{\mathop{E}}\,=0 \\
\overset{\to }{\mathop{\nabla }}\,\cdot \overset{\to }{\mathop{H}}\,=0 \\
\overset{\to }{\mathop{\nabla }}\,\times \overset{\to }{\mathop{E}}\,=-{{\mu }_{o}}\dfrac{\partial \overset{\to }{\mathop{H}}\,}{\partial t} \\
\overset{\to }{\mathop{\nabla }}\,\times \overset{\to }{\mathop{H}}\,={{\varepsilon }_{o}}\dfrac{\partial \overset{\to }{\mathop{E}}\,}{\partial t} \\
\]
Complete step by step solution:
Consider the plane wave equations of electric wave and magnetic wave:
\[
\overset{\to }{\mathop{E}}\,\left( \overset{\to }{\mathop{r}}\,,t \right)=\overset{\to }{\mathop{{{E}_{o}}}}\,{{e}^{j(\overset{\to }{\mathop{k}}\,\cdot \overset{\to }{\mathop{r}}\,-\omega t)}} \\
\overset{\to }{\mathop{H}}\,\left( \overset{\to }{\mathop{r}}\,,t \right)=\overset{\to }{\mathop{{{H}_{o}}}}\,{{e}^{j(\overset{\to }{\mathop{k}}\,\cdot \overset{\to }{\mathop{r}}\,-\omega t)}} \\
\]
Where \[\overset{\to }{\mathop{{{E}_{o}}}}\,\] and \[\overset{\to }{\mathop{{{H}_{o}}}}\,\] are complex amplitudes, which are constants in space and time, \[\overset{\to }{\mathop{k}}\,\] is the wave vector determining the direction of propagation of the wave. \[\overset{\to }{\mathop{k}}\,\] is defined as
\[\overset{\to }{\mathop{k}}\,=\dfrac{2\pi }{\lambda }\overset{\wedge }{\mathop{n}}\,=\dfrac{\omega }{c}\overset{\wedge }{\mathop{n}}\,\]
Where \[\overset{\wedge }{\mathop{n}}\,\] is the unit vector along the direction of propagation.
Substituting the plane wave solutions in equations \[\overset{\to }{\mathop{\nabla }}\,\cdot \overset{\to }{\mathop{E}}\,=0\] and \[\overset{\to }{\mathop{\nabla }}\,\cdot \overset{\to }{\mathop{H}}\,=0\] respectively:
\[\overset{\to }{\mathop{k}}\,\cdot \overset{\to }{\mathop{E}}\,=0\] and \[\overset{\to }{\mathop{k}}\,\cdot \overset{\to }{\mathop{H}}\,=0\]
Thus, \[\overset{\to }{\mathop{E}}\,\] and \[\overset{\to }{\mathop{H}}\,\] are both perpendicular to the direction of propagation vector \[\overset{\to }{\mathop{k}}\,\].
This implies that electromagnetic waves are transverse in nature.
Substituting the plane wave solutions in equations \[\overset{\to }{\mathop{\nabla }}\,\times \overset{\to }{\mathop{E}}\,=-{{\mu }_{o}}\dfrac{\partial \overset{\to }{\mathop{H}}\,}{\partial t}\] and \[\overset{\to }{\mathop{\nabla }}\,\times \overset{\to }{\mathop{H}}\,={{\varepsilon }_{o}}\dfrac{\partial \overset{\to }{\mathop{E}}\,}{\partial t}\] respectively:
\[
\overset{\to }{\mathop{k}}\,\times \overset{\to }{\mathop{E}}\,={{\mu }_{o}}\omega \overset{\to }{\mathop{H}}\, \\
\overset{\to }{\mathop{k}}\,\times \overset{\to }{\mathop{H}}\,=-{{\varepsilon }_{o}}\omega \overset{\to }{\mathop{E}}\, \\
\]
Since \[\overset{\to }{\mathop{E}}\,\] is normal to \[\overset{\to }{\mathop{k}}\,\], in terms of magnitude,
\[
\text{ }kE={{\mu }_{o}}\omega H \\
\sqrt{{{\varepsilon }_{o}}}E=\sqrt{{{\mu }_{o}}}H\text{ }\!\![\!\!\text{ }{{k}^{2}}={{\varepsilon }_{o}}{{\mu }_{o}}{{\omega }^{2}}] \\
\text{ }E=\sqrt{\dfrac{{{\mu }_{o}}}{{{\varepsilon }_{o}}}}H \\
\]
Therefore, option C is the correct relation between E and H.
Additional information:
\[\overset{\to }{\mathop{E}}\,\] and \[\overset{\to }{\mathop{H}}\,\] are both perpendicular to the direction of propagation vector \[\overset{\to }{\mathop{k}}\,\].
This implies that electromagnetic waves are transverse in nature.
\[\overset{\to }{\mathop{k}}\,\times \overset{\to }{\mathop{E}}\,={{\mu }_{o}}\omega \overset{\to }{\mathop{H}}\,\] implies that \[\overset{\to }{\mathop{H}}\,\] is perpendicular to both \[\overset{\to }{\mathop{k}}\,\] and \[\overset{\to }{\mathop{E}}\,\].
\[\overset{\to }{\mathop{k}}\,\times \overset{\to }{\mathop{H}}\,=-{{\varepsilon }_{o}}\omega \overset{\to }{\mathop{E}}\,\] implies that \[\overset{\to }{\mathop{E}}\,\] is perpendicular to both \[\overset{\to }{\mathop{k}}\,\] and \[\overset{\to }{\mathop{H}}\,\].
Thus, the field \[\overset{\to }{\mathop{E}}\,\] and \[\overset{\to }{\mathop{H}}\,\] are mutually perpendicular and also they are perpendicular to the direction of propagation vector \[\overset{\to }{\mathop{k}}\,\].
The velocity of propagation of electromagnetic waves is equal to the speed of light in free space. This indicates that the light is an electromagnetic wave.
Note: The relation obtained between \[\overset{\to }{\mathop{E}}\,\] and \[\overset{\to }{\mathop{H}}\,\] is only true for plane electromagnetic waves in free space.
Formula used:
In free space, where there is no charge or current, the four Maxwell’s equations are of the following form:
\[
\overset{\to }{\mathop{\nabla }}\,\cdot \overset{\to }{\mathop{E}}\,=0 \\
\overset{\to }{\mathop{\nabla }}\,\cdot \overset{\to }{\mathop{H}}\,=0 \\
\overset{\to }{\mathop{\nabla }}\,\times \overset{\to }{\mathop{E}}\,=-{{\mu }_{o}}\dfrac{\partial \overset{\to }{\mathop{H}}\,}{\partial t} \\
\overset{\to }{\mathop{\nabla }}\,\times \overset{\to }{\mathop{H}}\,={{\varepsilon }_{o}}\dfrac{\partial \overset{\to }{\mathop{E}}\,}{\partial t} \\
\]
Complete step by step solution:
Consider the plane wave equations of electric wave and magnetic wave:
\[
\overset{\to }{\mathop{E}}\,\left( \overset{\to }{\mathop{r}}\,,t \right)=\overset{\to }{\mathop{{{E}_{o}}}}\,{{e}^{j(\overset{\to }{\mathop{k}}\,\cdot \overset{\to }{\mathop{r}}\,-\omega t)}} \\
\overset{\to }{\mathop{H}}\,\left( \overset{\to }{\mathop{r}}\,,t \right)=\overset{\to }{\mathop{{{H}_{o}}}}\,{{e}^{j(\overset{\to }{\mathop{k}}\,\cdot \overset{\to }{\mathop{r}}\,-\omega t)}} \\
\]
Where \[\overset{\to }{\mathop{{{E}_{o}}}}\,\] and \[\overset{\to }{\mathop{{{H}_{o}}}}\,\] are complex amplitudes, which are constants in space and time, \[\overset{\to }{\mathop{k}}\,\] is the wave vector determining the direction of propagation of the wave. \[\overset{\to }{\mathop{k}}\,\] is defined as
\[\overset{\to }{\mathop{k}}\,=\dfrac{2\pi }{\lambda }\overset{\wedge }{\mathop{n}}\,=\dfrac{\omega }{c}\overset{\wedge }{\mathop{n}}\,\]
Where \[\overset{\wedge }{\mathop{n}}\,\] is the unit vector along the direction of propagation.
Substituting the plane wave solutions in equations \[\overset{\to }{\mathop{\nabla }}\,\cdot \overset{\to }{\mathop{E}}\,=0\] and \[\overset{\to }{\mathop{\nabla }}\,\cdot \overset{\to }{\mathop{H}}\,=0\] respectively:
\[\overset{\to }{\mathop{k}}\,\cdot \overset{\to }{\mathop{E}}\,=0\] and \[\overset{\to }{\mathop{k}}\,\cdot \overset{\to }{\mathop{H}}\,=0\]
Thus, \[\overset{\to }{\mathop{E}}\,\] and \[\overset{\to }{\mathop{H}}\,\] are both perpendicular to the direction of propagation vector \[\overset{\to }{\mathop{k}}\,\].
This implies that electromagnetic waves are transverse in nature.
Substituting the plane wave solutions in equations \[\overset{\to }{\mathop{\nabla }}\,\times \overset{\to }{\mathop{E}}\,=-{{\mu }_{o}}\dfrac{\partial \overset{\to }{\mathop{H}}\,}{\partial t}\] and \[\overset{\to }{\mathop{\nabla }}\,\times \overset{\to }{\mathop{H}}\,={{\varepsilon }_{o}}\dfrac{\partial \overset{\to }{\mathop{E}}\,}{\partial t}\] respectively:
\[
\overset{\to }{\mathop{k}}\,\times \overset{\to }{\mathop{E}}\,={{\mu }_{o}}\omega \overset{\to }{\mathop{H}}\, \\
\overset{\to }{\mathop{k}}\,\times \overset{\to }{\mathop{H}}\,=-{{\varepsilon }_{o}}\omega \overset{\to }{\mathop{E}}\, \\
\]
Since \[\overset{\to }{\mathop{E}}\,\] is normal to \[\overset{\to }{\mathop{k}}\,\], in terms of magnitude,
\[
\text{ }kE={{\mu }_{o}}\omega H \\
\sqrt{{{\varepsilon }_{o}}}E=\sqrt{{{\mu }_{o}}}H\text{ }\!\![\!\!\text{ }{{k}^{2}}={{\varepsilon }_{o}}{{\mu }_{o}}{{\omega }^{2}}] \\
\text{ }E=\sqrt{\dfrac{{{\mu }_{o}}}{{{\varepsilon }_{o}}}}H \\
\]
Therefore, option C is the correct relation between E and H.
Additional information:
\[\overset{\to }{\mathop{E}}\,\] and \[\overset{\to }{\mathop{H}}\,\] are both perpendicular to the direction of propagation vector \[\overset{\to }{\mathop{k}}\,\].
This implies that electromagnetic waves are transverse in nature.
\[\overset{\to }{\mathop{k}}\,\times \overset{\to }{\mathop{E}}\,={{\mu }_{o}}\omega \overset{\to }{\mathop{H}}\,\] implies that \[\overset{\to }{\mathop{H}}\,\] is perpendicular to both \[\overset{\to }{\mathop{k}}\,\] and \[\overset{\to }{\mathop{E}}\,\].
\[\overset{\to }{\mathop{k}}\,\times \overset{\to }{\mathop{H}}\,=-{{\varepsilon }_{o}}\omega \overset{\to }{\mathop{E}}\,\] implies that \[\overset{\to }{\mathop{E}}\,\] is perpendicular to both \[\overset{\to }{\mathop{k}}\,\] and \[\overset{\to }{\mathop{H}}\,\].
Thus, the field \[\overset{\to }{\mathop{E}}\,\] and \[\overset{\to }{\mathop{H}}\,\] are mutually perpendicular and also they are perpendicular to the direction of propagation vector \[\overset{\to }{\mathop{k}}\,\].
The velocity of propagation of electromagnetic waves is equal to the speed of light in free space. This indicates that the light is an electromagnetic wave.
Note: The relation obtained between \[\overset{\to }{\mathop{E}}\,\] and \[\overset{\to }{\mathop{H}}\,\] is only true for plane electromagnetic waves in free space.
Recently Updated Pages
How is abiogenesis theory disproved experimentally class 12 biology CBSE
What is Biological Magnification
Explain the Basics of Computer and Number System?
Class 11 Question and Answer - Your Ultimate Solutions Guide
Write the IUPAC name of the given compound class 11 chemistry CBSE
Write the IUPAC name of the given compound class 11 chemistry CBSE
Trending doubts
Who was the Governor general of India at the time of class 11 social science CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
State and prove Bernoullis theorem class 11 physics CBSE
Proton was discovered by A Thomson B Rutherford C Chadwick class 11 chemistry CBSE
What organs are located on the left side of your body class 11 biology CBSE