
The relation between electric field E and magnetic field H in electromagnetic wave is:
A. \[E=H\]
B. \[E=\dfrac{{{\mu }_{o}}}{{{\varepsilon }_{o}}}H\]
C. \[E=\sqrt{\dfrac{{{\mu }_{o}}}{{{\varepsilon }_{o}}}}H\]
D. \[E=\sqrt{\dfrac{{{\varepsilon }_{o}}}{{{\mu }_{o}}}}H\]
Answer
486.9k+ views
Hint: The ratio of the magnitudes of electric and magnetic fields equals the speed of light in free space.
Formula used:
In free space, where there is no charge or current, the four Maxwell’s equations are of the following form:
\[
\overset{\to }{\mathop{\nabla }}\,\cdot \overset{\to }{\mathop{E}}\,=0 \\
\overset{\to }{\mathop{\nabla }}\,\cdot \overset{\to }{\mathop{H}}\,=0 \\
\overset{\to }{\mathop{\nabla }}\,\times \overset{\to }{\mathop{E}}\,=-{{\mu }_{o}}\dfrac{\partial \overset{\to }{\mathop{H}}\,}{\partial t} \\
\overset{\to }{\mathop{\nabla }}\,\times \overset{\to }{\mathop{H}}\,={{\varepsilon }_{o}}\dfrac{\partial \overset{\to }{\mathop{E}}\,}{\partial t} \\
\]
Complete step by step solution:
Consider the plane wave equations of electric wave and magnetic wave:
\[
\overset{\to }{\mathop{E}}\,\left( \overset{\to }{\mathop{r}}\,,t \right)=\overset{\to }{\mathop{{{E}_{o}}}}\,{{e}^{j(\overset{\to }{\mathop{k}}\,\cdot \overset{\to }{\mathop{r}}\,-\omega t)}} \\
\overset{\to }{\mathop{H}}\,\left( \overset{\to }{\mathop{r}}\,,t \right)=\overset{\to }{\mathop{{{H}_{o}}}}\,{{e}^{j(\overset{\to }{\mathop{k}}\,\cdot \overset{\to }{\mathop{r}}\,-\omega t)}} \\
\]
Where \[\overset{\to }{\mathop{{{E}_{o}}}}\,\] and \[\overset{\to }{\mathop{{{H}_{o}}}}\,\] are complex amplitudes, which are constants in space and time, \[\overset{\to }{\mathop{k}}\,\] is the wave vector determining the direction of propagation of the wave. \[\overset{\to }{\mathop{k}}\,\] is defined as
\[\overset{\to }{\mathop{k}}\,=\dfrac{2\pi }{\lambda }\overset{\wedge }{\mathop{n}}\,=\dfrac{\omega }{c}\overset{\wedge }{\mathop{n}}\,\]
Where \[\overset{\wedge }{\mathop{n}}\,\] is the unit vector along the direction of propagation.
Substituting the plane wave solutions in equations \[\overset{\to }{\mathop{\nabla }}\,\cdot \overset{\to }{\mathop{E}}\,=0\] and \[\overset{\to }{\mathop{\nabla }}\,\cdot \overset{\to }{\mathop{H}}\,=0\] respectively:
\[\overset{\to }{\mathop{k}}\,\cdot \overset{\to }{\mathop{E}}\,=0\] and \[\overset{\to }{\mathop{k}}\,\cdot \overset{\to }{\mathop{H}}\,=0\]
Thus, \[\overset{\to }{\mathop{E}}\,\] and \[\overset{\to }{\mathop{H}}\,\] are both perpendicular to the direction of propagation vector \[\overset{\to }{\mathop{k}}\,\].
This implies that electromagnetic waves are transverse in nature.
Substituting the plane wave solutions in equations \[\overset{\to }{\mathop{\nabla }}\,\times \overset{\to }{\mathop{E}}\,=-{{\mu }_{o}}\dfrac{\partial \overset{\to }{\mathop{H}}\,}{\partial t}\] and \[\overset{\to }{\mathop{\nabla }}\,\times \overset{\to }{\mathop{H}}\,={{\varepsilon }_{o}}\dfrac{\partial \overset{\to }{\mathop{E}}\,}{\partial t}\] respectively:
\[
\overset{\to }{\mathop{k}}\,\times \overset{\to }{\mathop{E}}\,={{\mu }_{o}}\omega \overset{\to }{\mathop{H}}\, \\
\overset{\to }{\mathop{k}}\,\times \overset{\to }{\mathop{H}}\,=-{{\varepsilon }_{o}}\omega \overset{\to }{\mathop{E}}\, \\
\]
Since \[\overset{\to }{\mathop{E}}\,\] is normal to \[\overset{\to }{\mathop{k}}\,\], in terms of magnitude,
\[
\text{ }kE={{\mu }_{o}}\omega H \\
\sqrt{{{\varepsilon }_{o}}}E=\sqrt{{{\mu }_{o}}}H\text{ }\!\![\!\!\text{ }{{k}^{2}}={{\varepsilon }_{o}}{{\mu }_{o}}{{\omega }^{2}}] \\
\text{ }E=\sqrt{\dfrac{{{\mu }_{o}}}{{{\varepsilon }_{o}}}}H \\
\]
Therefore, option C is the correct relation between E and H.
Additional information:
\[\overset{\to }{\mathop{E}}\,\] and \[\overset{\to }{\mathop{H}}\,\] are both perpendicular to the direction of propagation vector \[\overset{\to }{\mathop{k}}\,\].
This implies that electromagnetic waves are transverse in nature.
\[\overset{\to }{\mathop{k}}\,\times \overset{\to }{\mathop{E}}\,={{\mu }_{o}}\omega \overset{\to }{\mathop{H}}\,\] implies that \[\overset{\to }{\mathop{H}}\,\] is perpendicular to both \[\overset{\to }{\mathop{k}}\,\] and \[\overset{\to }{\mathop{E}}\,\].
\[\overset{\to }{\mathop{k}}\,\times \overset{\to }{\mathop{H}}\,=-{{\varepsilon }_{o}}\omega \overset{\to }{\mathop{E}}\,\] implies that \[\overset{\to }{\mathop{E}}\,\] is perpendicular to both \[\overset{\to }{\mathop{k}}\,\] and \[\overset{\to }{\mathop{H}}\,\].
Thus, the field \[\overset{\to }{\mathop{E}}\,\] and \[\overset{\to }{\mathop{H}}\,\] are mutually perpendicular and also they are perpendicular to the direction of propagation vector \[\overset{\to }{\mathop{k}}\,\].
The velocity of propagation of electromagnetic waves is equal to the speed of light in free space. This indicates that the light is an electromagnetic wave.
Note: The relation obtained between \[\overset{\to }{\mathop{E}}\,\] and \[\overset{\to }{\mathop{H}}\,\] is only true for plane electromagnetic waves in free space.
Formula used:
In free space, where there is no charge or current, the four Maxwell’s equations are of the following form:
\[
\overset{\to }{\mathop{\nabla }}\,\cdot \overset{\to }{\mathop{E}}\,=0 \\
\overset{\to }{\mathop{\nabla }}\,\cdot \overset{\to }{\mathop{H}}\,=0 \\
\overset{\to }{\mathop{\nabla }}\,\times \overset{\to }{\mathop{E}}\,=-{{\mu }_{o}}\dfrac{\partial \overset{\to }{\mathop{H}}\,}{\partial t} \\
\overset{\to }{\mathop{\nabla }}\,\times \overset{\to }{\mathop{H}}\,={{\varepsilon }_{o}}\dfrac{\partial \overset{\to }{\mathop{E}}\,}{\partial t} \\
\]
Complete step by step solution:
Consider the plane wave equations of electric wave and magnetic wave:
\[
\overset{\to }{\mathop{E}}\,\left( \overset{\to }{\mathop{r}}\,,t \right)=\overset{\to }{\mathop{{{E}_{o}}}}\,{{e}^{j(\overset{\to }{\mathop{k}}\,\cdot \overset{\to }{\mathop{r}}\,-\omega t)}} \\
\overset{\to }{\mathop{H}}\,\left( \overset{\to }{\mathop{r}}\,,t \right)=\overset{\to }{\mathop{{{H}_{o}}}}\,{{e}^{j(\overset{\to }{\mathop{k}}\,\cdot \overset{\to }{\mathop{r}}\,-\omega t)}} \\
\]
Where \[\overset{\to }{\mathop{{{E}_{o}}}}\,\] and \[\overset{\to }{\mathop{{{H}_{o}}}}\,\] are complex amplitudes, which are constants in space and time, \[\overset{\to }{\mathop{k}}\,\] is the wave vector determining the direction of propagation of the wave. \[\overset{\to }{\mathop{k}}\,\] is defined as
\[\overset{\to }{\mathop{k}}\,=\dfrac{2\pi }{\lambda }\overset{\wedge }{\mathop{n}}\,=\dfrac{\omega }{c}\overset{\wedge }{\mathop{n}}\,\]
Where \[\overset{\wedge }{\mathop{n}}\,\] is the unit vector along the direction of propagation.
Substituting the plane wave solutions in equations \[\overset{\to }{\mathop{\nabla }}\,\cdot \overset{\to }{\mathop{E}}\,=0\] and \[\overset{\to }{\mathop{\nabla }}\,\cdot \overset{\to }{\mathop{H}}\,=0\] respectively:
\[\overset{\to }{\mathop{k}}\,\cdot \overset{\to }{\mathop{E}}\,=0\] and \[\overset{\to }{\mathop{k}}\,\cdot \overset{\to }{\mathop{H}}\,=0\]
Thus, \[\overset{\to }{\mathop{E}}\,\] and \[\overset{\to }{\mathop{H}}\,\] are both perpendicular to the direction of propagation vector \[\overset{\to }{\mathop{k}}\,\].
This implies that electromagnetic waves are transverse in nature.
Substituting the plane wave solutions in equations \[\overset{\to }{\mathop{\nabla }}\,\times \overset{\to }{\mathop{E}}\,=-{{\mu }_{o}}\dfrac{\partial \overset{\to }{\mathop{H}}\,}{\partial t}\] and \[\overset{\to }{\mathop{\nabla }}\,\times \overset{\to }{\mathop{H}}\,={{\varepsilon }_{o}}\dfrac{\partial \overset{\to }{\mathop{E}}\,}{\partial t}\] respectively:
\[
\overset{\to }{\mathop{k}}\,\times \overset{\to }{\mathop{E}}\,={{\mu }_{o}}\omega \overset{\to }{\mathop{H}}\, \\
\overset{\to }{\mathop{k}}\,\times \overset{\to }{\mathop{H}}\,=-{{\varepsilon }_{o}}\omega \overset{\to }{\mathop{E}}\, \\
\]
Since \[\overset{\to }{\mathop{E}}\,\] is normal to \[\overset{\to }{\mathop{k}}\,\], in terms of magnitude,
\[
\text{ }kE={{\mu }_{o}}\omega H \\
\sqrt{{{\varepsilon }_{o}}}E=\sqrt{{{\mu }_{o}}}H\text{ }\!\![\!\!\text{ }{{k}^{2}}={{\varepsilon }_{o}}{{\mu }_{o}}{{\omega }^{2}}] \\
\text{ }E=\sqrt{\dfrac{{{\mu }_{o}}}{{{\varepsilon }_{o}}}}H \\
\]
Therefore, option C is the correct relation between E and H.
Additional information:
\[\overset{\to }{\mathop{E}}\,\] and \[\overset{\to }{\mathop{H}}\,\] are both perpendicular to the direction of propagation vector \[\overset{\to }{\mathop{k}}\,\].
This implies that electromagnetic waves are transverse in nature.
\[\overset{\to }{\mathop{k}}\,\times \overset{\to }{\mathop{E}}\,={{\mu }_{o}}\omega \overset{\to }{\mathop{H}}\,\] implies that \[\overset{\to }{\mathop{H}}\,\] is perpendicular to both \[\overset{\to }{\mathop{k}}\,\] and \[\overset{\to }{\mathop{E}}\,\].
\[\overset{\to }{\mathop{k}}\,\times \overset{\to }{\mathop{H}}\,=-{{\varepsilon }_{o}}\omega \overset{\to }{\mathop{E}}\,\] implies that \[\overset{\to }{\mathop{E}}\,\] is perpendicular to both \[\overset{\to }{\mathop{k}}\,\] and \[\overset{\to }{\mathop{H}}\,\].
Thus, the field \[\overset{\to }{\mathop{E}}\,\] and \[\overset{\to }{\mathop{H}}\,\] are mutually perpendicular and also they are perpendicular to the direction of propagation vector \[\overset{\to }{\mathop{k}}\,\].
The velocity of propagation of electromagnetic waves is equal to the speed of light in free space. This indicates that the light is an electromagnetic wave.
Note: The relation obtained between \[\overset{\to }{\mathop{E}}\,\] and \[\overset{\to }{\mathop{H}}\,\] is only true for plane electromagnetic waves in free space.
Recently Updated Pages
The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE

Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE

With reference to graphite and diamond which of the class 11 chemistry CBSE

A certain household has consumed 250 units of energy class 11 physics CBSE

The lightest metal known is A beryllium B lithium C class 11 chemistry CBSE

What is the formula mass of the iodine molecule class 11 chemistry CBSE

Trending doubts
Is Cellular respiration an Oxidation or Reduction class 11 chemistry CBSE

In electron dot structure the valence shell electrons class 11 chemistry CBSE

What is the Pitti Island famous for ABird Sanctuary class 11 social science CBSE

State the laws of reflection of light

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells
