Answer
Verified
419.1k+ views
Hint:Recall Maxwell's equation and calculate the curl of the electric field.Express the solutions of differential equations of electric field and magnetic field and substitute it into the Maxwell’s equation you obtained after taking the curl. We know that speed of light is expressed as, \[c = \dfrac{\omega }{k} = \dfrac{1}{{\sqrt {{\mu _0}{\varepsilon _0}} }}\].
Complete step by step answer:
To answer this question, we can derive the relation between electric field and magnetic field of the electromagnetic wave using Maxwell’s equation. We will start with one of Maxwell’s equation,
\[\nabla \times E = - {\mu _0}\dfrac{{\partial B}}{{\partial t}}\] …… (1)
We assume the electric field is along the y-axis and magnetic field is along the z-axis. Since electric field and magnetic field are only function of distance x and time x, we can write the equation for electric field and magnetic field as follows,
\[\vec E\left( {x,t} \right) = E\left( {x,t} \right)\hat j\] and, \[\vec B\left( {x,t} \right) = B\left( {x,t} \right)\hat k\] …… (2)
We take the curl of electric field as follows,
\[\nabla \times \vec E\left( {x,t} \right) = \left[ {\begin{array}{*{20}{c}}
{\hat i}&{\hat j}&{\hat k} \\
{\dfrac{\partial }{{\partial x}}}&{\dfrac{\partial }{{\partial y}}}&{\dfrac{\partial }{{\partial z}}} \\
0&{E\left( {x,t} \right)}&0
\end{array}} \right]\]
\[ \Rightarrow \nabla \times \vec E\left( {x,t} \right) = - \dfrac{{\partial E}}{{\partial x}}\hat k\] …… (3)
From equation (1) and (2), we can write,
\[\dfrac{{\partial E}}{{\partial x}} = - {\mu _0}\dfrac{{\partial B}}{{\partial t}}\] …… (4)
We have the solutions of differential equations of electric field and magnetic field is,
\[E\left( {x,t} \right) = {E_{\max }}\cos \left( {kx - \omega t} \right)\] …… (5)
And,
\[B\left( {x,t} \right) = {B_{\max }}\cos \left( {kx - \omega t} \right)\] …… (6)
Substituting equation (5) and (6) in equation (4), we have,
\[\dfrac{\partial }{{\partial x}}\left( {{E_{\max }}\cos \left( {kx - \omega t} \right)} \right) = - {\mu _0}\dfrac{\partial }{{\partial t}}\left( {{B_{\max }}\cos \left( {kx - \omega t} \right)} \right)\]
\[ \Rightarrow {E_{\max }}\cos \left( {kx - \omega t} \right)\left( k \right) = - {\mu _0}{B_{\max }}\cos \left( {kx - \omega t} \right)\left( { - \omega } \right)\]
\[ \Rightarrow k{E_{\max }} = \omega {\mu _0}{B_{\max }}\]
\[ \Rightarrow {E_{\max }} = \dfrac{\omega }{k}{\mu _0}{B_{\max }}\]
We know that, the speed of light is expressed as,
\[c = \dfrac{\omega }{k} = \dfrac{1}{{\sqrt {{\mu _0}{\varepsilon _0}} }}\]
Therefore, the above equation becomes,
\[E = \dfrac{1}{{\sqrt {{\mu _0}{\varepsilon _0}} }}{\mu _0}B\]
\[ \therefore E = \sqrt {\dfrac{{{\mu _0}}}{{{\varepsilon _0}}}} B\]
So, the correct answer is option C.
Note:We can also answer this question by referring to the Poynting vector or energy transferred by the electromagnetic wave. The energy density of the electromagnetic wave is,
\[S = \dfrac{{{\mu _0}B_{\max }^2}}{2} = \dfrac{{{\varepsilon _0}E_{\max }^2}}{2}\]
\[ \Rightarrow \dfrac{{{E_{\max }}}}{{{B_{\max }}}} = \sqrt {\dfrac{{{\mu _0}}}{{{\varepsilon _0}}}} \]
Electric fields and magnetic fields are perpendicular to each other only for electromagnetic waves.
Complete step by step answer:
To answer this question, we can derive the relation between electric field and magnetic field of the electromagnetic wave using Maxwell’s equation. We will start with one of Maxwell’s equation,
\[\nabla \times E = - {\mu _0}\dfrac{{\partial B}}{{\partial t}}\] …… (1)
We assume the electric field is along the y-axis and magnetic field is along the z-axis. Since electric field and magnetic field are only function of distance x and time x, we can write the equation for electric field and magnetic field as follows,
\[\vec E\left( {x,t} \right) = E\left( {x,t} \right)\hat j\] and, \[\vec B\left( {x,t} \right) = B\left( {x,t} \right)\hat k\] …… (2)
We take the curl of electric field as follows,
\[\nabla \times \vec E\left( {x,t} \right) = \left[ {\begin{array}{*{20}{c}}
{\hat i}&{\hat j}&{\hat k} \\
{\dfrac{\partial }{{\partial x}}}&{\dfrac{\partial }{{\partial y}}}&{\dfrac{\partial }{{\partial z}}} \\
0&{E\left( {x,t} \right)}&0
\end{array}} \right]\]
\[ \Rightarrow \nabla \times \vec E\left( {x,t} \right) = - \dfrac{{\partial E}}{{\partial x}}\hat k\] …… (3)
From equation (1) and (2), we can write,
\[\dfrac{{\partial E}}{{\partial x}} = - {\mu _0}\dfrac{{\partial B}}{{\partial t}}\] …… (4)
We have the solutions of differential equations of electric field and magnetic field is,
\[E\left( {x,t} \right) = {E_{\max }}\cos \left( {kx - \omega t} \right)\] …… (5)
And,
\[B\left( {x,t} \right) = {B_{\max }}\cos \left( {kx - \omega t} \right)\] …… (6)
Substituting equation (5) and (6) in equation (4), we have,
\[\dfrac{\partial }{{\partial x}}\left( {{E_{\max }}\cos \left( {kx - \omega t} \right)} \right) = - {\mu _0}\dfrac{\partial }{{\partial t}}\left( {{B_{\max }}\cos \left( {kx - \omega t} \right)} \right)\]
\[ \Rightarrow {E_{\max }}\cos \left( {kx - \omega t} \right)\left( k \right) = - {\mu _0}{B_{\max }}\cos \left( {kx - \omega t} \right)\left( { - \omega } \right)\]
\[ \Rightarrow k{E_{\max }} = \omega {\mu _0}{B_{\max }}\]
\[ \Rightarrow {E_{\max }} = \dfrac{\omega }{k}{\mu _0}{B_{\max }}\]
We know that, the speed of light is expressed as,
\[c = \dfrac{\omega }{k} = \dfrac{1}{{\sqrt {{\mu _0}{\varepsilon _0}} }}\]
Therefore, the above equation becomes,
\[E = \dfrac{1}{{\sqrt {{\mu _0}{\varepsilon _0}} }}{\mu _0}B\]
\[ \therefore E = \sqrt {\dfrac{{{\mu _0}}}{{{\varepsilon _0}}}} B\]
So, the correct answer is option C.
Note:We can also answer this question by referring to the Poynting vector or energy transferred by the electromagnetic wave. The energy density of the electromagnetic wave is,
\[S = \dfrac{{{\mu _0}B_{\max }^2}}{2} = \dfrac{{{\varepsilon _0}E_{\max }^2}}{2}\]
\[ \Rightarrow \dfrac{{{E_{\max }}}}{{{B_{\max }}}} = \sqrt {\dfrac{{{\mu _0}}}{{{\varepsilon _0}}}} \]
Electric fields and magnetic fields are perpendicular to each other only for electromagnetic waves.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Who gave the slogan Jai Hind ALal Bahadur Shastri BJawaharlal class 11 social science CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE