
The remainder when \[1!+2!+3!+.....95!\] is divided by 15 is -
(a) 3
(b) 5
(c) 8
(d) 12
Answer
508.8k+ views
Hint: Here in this question, we have to find the reminder of the given factorial sum. For this, we know that the value of factorials after 5! will leave the remainder zero when it is divided by 20. So, for calculating the remainder, we will calculate the remainder before that number.
Complete step by step answer:
So, first we will calculate the factorial till 5!. So, for this, the factorials will be,
\[\begin{align}
& 1!=1,2!=2\times 1,3!=3\times 2\times 1=6, \\
& 4!=4\times 3\times 2\times 1=24 \\
\end{align}\]
And the factorial after 5! will have the remainder zero. So, now adding all the factorial values from 1 to 5, we get \[\Rightarrow \dfrac{1!+2!+3!+4!}{15}\]
And on substituting the values, we had obtained above, we will get the equations as \[\Rightarrow \dfrac{1+2+6+24}{15}\]
Now, adding the numerator of the above fraction, we get the fractions as \[\Rightarrow \dfrac{33}{15}\]
And now on dividing it, we get the remainder as 3.
Therefore, the remainder for the factorial,
\[1!+2!+3!+.....95!\]
Note that \[5!=1\times 2\times 3\times 4\times 5\] is divisible by 15, and hence for any number, \[n\ge 5\], we have \[n!=1.2.3.4.5.....n\] is divided by 15 and these are divisible.
Therefore, the remainder when \[1!+2!+3!+.....95!\] is divided by 15 the same as the remainder when 15 divides \[1!+2!+3!+4!\].
Now, \[1!+2!+3!+4!=1+2+6+24=33\] is divided by 15, then the remainder is 3.
So, the correct answer is “Option a”.
Note: 20 can be factored as a product of 5 and 4. So, the least value of factorial which contains both 4 and 5 is 5!. So, 5! And any factorial greater than always contains both 5 and 4. So, the remainder is going to be zero for any x!.
Whether x is either 5 or greater than 5. For solving this type of question we should know how to calculate the factorial of any number. And also if we memorize the properties then we don’t have to solve and add fractional value.
Complete step by step answer:
So, first we will calculate the factorial till 5!. So, for this, the factorials will be,
\[\begin{align}
& 1!=1,2!=2\times 1,3!=3\times 2\times 1=6, \\
& 4!=4\times 3\times 2\times 1=24 \\
\end{align}\]
And the factorial after 5! will have the remainder zero. So, now adding all the factorial values from 1 to 5, we get \[\Rightarrow \dfrac{1!+2!+3!+4!}{15}\]
And on substituting the values, we had obtained above, we will get the equations as \[\Rightarrow \dfrac{1+2+6+24}{15}\]
Now, adding the numerator of the above fraction, we get the fractions as \[\Rightarrow \dfrac{33}{15}\]
And now on dividing it, we get the remainder as 3.
Therefore, the remainder for the factorial,
\[1!+2!+3!+.....95!\]
Note that \[5!=1\times 2\times 3\times 4\times 5\] is divisible by 15, and hence for any number, \[n\ge 5\], we have \[n!=1.2.3.4.5.....n\] is divided by 15 and these are divisible.
Therefore, the remainder when \[1!+2!+3!+.....95!\] is divided by 15 the same as the remainder when 15 divides \[1!+2!+3!+4!\].
Now, \[1!+2!+3!+4!=1+2+6+24=33\] is divided by 15, then the remainder is 3.
So, the correct answer is “Option a”.
Note: 20 can be factored as a product of 5 and 4. So, the least value of factorial which contains both 4 and 5 is 5!. So, 5! And any factorial greater than always contains both 5 and 4. So, the remainder is going to be zero for any x!.
Whether x is either 5 or greater than 5. For solving this type of question we should know how to calculate the factorial of any number. And also if we memorize the properties then we don’t have to solve and add fractional value.
Recently Updated Pages
The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Differentiate between action potential and resting class 12 biology CBSE

Two plane mirrors arranged at right angles to each class 12 physics CBSE

Which of the following molecules is are chiral A I class 12 chemistry CBSE

Name different types of neurons and give one function class 12 biology CBSE

Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Who among the following opened first school for girls class 9 social science CBSE

What does the word meridian mean A New day B Midday class 9 social science CBSE

What is the full form of pH?

Write the 6 fundamental rights of India and explain in detail

Which places in India experience sunrise first and class 9 social science CBSE

