
The remainder when ${{2}^{2003}}$ is divided by 17 is,
[a]1
[b] 2
[c] 3
[d] None of the above
Answer
512.7k+ views
Hint: Write ${{2}^{2003}}$ as $8\times {{2}^{2000}}$ and use the fact that ${{2}^{4}}=16=17-1$. Hence prove that ${{2}^{2003}}=8\times {{\left( 17-1 \right)}^{500}}$. Use the binomial theorem to find the expansion of the term ${{\left( 17-1 \right)}^{500}}$. Remove all multiples of 17 and hence find the remainder obtained on dividing ${{2}^{2003}}$ by 17. Use the rule of congruences to verify your solution
Complete step-by-step answer:
To find the remainder of ${{2}^{2003}}$ we have to simplify it first. Therefore it can also be written as,
\[\therefore {{2}^{2003}}={{2}^{\left( 2000+3 \right)}}\]
Now to solve further we should know the formula given below,
Formula:
\[{{a}^{m}}\times {{a}^{n}}={{a}^{m+n}}\]
By using the above formula, we can write the equation as,
\[\therefore {{2}^{2003}}={{2}^{2000}}\times {{2}^{3}}\]
Above equation can also be written as,
\[\therefore {{2}^{2003}}={{2}^{4\times 500}}\times {{2}^{3}}\]
As we have to divide ${{2}^{2003}}$ by 17 therefore we have to represent it in the form of 17, and for that, we have to find the power of 2 such that it will give the number nearer to 17.
As we know \[{{2}^{4}}=16\] and it is nearer to 17 therefore we can represent in terms of 17, therefore we will get,
To do that so we have to know the formula given below,
Formula:
\[{{a}^{m\times n}}={{\left( {{a}^{m}} \right)}^{n}}\]
Therefore we can write \[{{2}^{2003}}\] as,
\[\therefore {{2}^{2003}}={{\left( {{2}^{4}} \right)}^{500}}\times {{2}^{3}}\]
If we put \[{{2}^{4}}=16\] in the above equation we will get,
\[\therefore {{2}^{2003}}={{\left( 16 \right)}^{500}}\times {{2}^{3}}\]
Now we can replace 16 as (17 – 1) therefore we will get,
\[\therefore {{2}^{2003}}={{\left( 17-1 \right)}^{500}}\times {{2}^{3}}\]
\[\therefore {{2}^{2003}}=8{{\left( 17-1 \right)}^{500}}\]
Now we will use the formula given below to solve the above equation,
Formula:
\[{{\left( a+b \right)}^{n}}={}^{n}{{C}_{0}}{{a}^{n}}{{b}^{0}}+{}^{n}{{C}_{1}}{{a}^{\left( n-1 \right)}}{{b}^{1}}+{}^{n}{{C}_{2}}{{a}^{\left( n-2 \right)}}{{b}^{2}}+{}^{n}{{C}_{3}}{{a}^{\left( n-3 \right)}}{{b}^{3}}+..............................+{}^{n}{{C}_{(n-1)}}a{{b}^{\left( n-1 \right)}}+{}^{n}{{C}_{n}}{{b}^{n}}\]
By using above formula we can write,
\[\therefore {{2}^{2003}}=8\times \left[ {}^{500}{{C}_{0}}{{17}^{500}}{{\left( -1 \right)}^{0}}+{}^{500}{{C}_{1}}{{17}^{499}}{{\left( -1 \right)}^{1}}+..............................+{}^{500}{{C}_{499}}17{{\left( -1 \right)}^{499}}+{}^{500}{{C}_{500}}{{\left( -1 \right)}^{500}} \right]\]As we know \[{}^{500}{{C}_{0}}=1\], \[{}^{500}{{C}_{500}}=1\], and also the odd powers of -1 gives the value equal to -1 therefore we will get,
\[\therefore {{2}^{2003}}=8\times \underline{{{17}^{500}}+{}^{500}{{C}_{1}}{{17}^{499}}+..............................-{}^{500}{{C}_{499}}17}+1\]
If we observe the underlined part above we come to know that the underlined part is multiple of 17, as we know it will be difficult to write the equation by taking 17 common therefore we will assume it as ‘a’ after we take 17 common.
Therefore if we take 17 common we will get ‘17a’ as we have assumed the product part as ‘a’. Therefore we will get,
\[\therefore {{2}^{2003}}=8\times \left[ 17\times a+1 \right]\]
\[\therefore {{2}^{2003}}=8\times 17a+8\times 1\]
\[\therefore {{2}^{2003}}=8\times 17a+8\]
We know by Euclid's division lemma that if a and b are any two positive integers then there exist unique integers q and r such that $a=bq+r,0\le r\le b-1$, r is known as the remainder of the division of a by b.
Hence by Euclid’s division lemma, we have the remainder obtained if we divide \[{{2}^{2003}}\] by 17 we will get the remainder as 8.
Note: Alternative solution:
We know that if $a\equiv b\left( \bmod m \right)$, then a-b is divisible by m.
Since $16-\left( -1 \right)$ is divisible by 17, we have
$16\equiv -1\left( \bmod 17 \right)$
We know that if $a\equiv b\left( \bmod m \right)$, then ${{a}^{n}}\equiv {{b}^{n}}\left( \bmod m \right)$
Hence, we have
$\begin{align}
& {{16}^{500}}\equiv {{\left( -1 \right)}^{500}}\left( \bmod m \right) \\
& \Rightarrow {{2}^{2000}}\equiv 1\left( \bmod m \right) \\
\end{align}$
We know that $a\equiv b\left( \bmod m \right),c\equiv d\left( \bmod m \right)\Rightarrow ac\equiv bd\left( \bmod m \right)$
Also since 8-8 is divisible by 17, we have
$8\equiv 8\left( \bmod 17 \right)$
Hence, we have
$\begin{align}
& {{2}^{2000}}\times 8\equiv 8\left( \bmod k \right) \\
& \Rightarrow {{2}^{2003}}\equiv 8\left( \bmod k \right) \\
\end{align}$
Hence, we have
$\begin{align}
& {{2}^{2003}}-8=17k,k\in \mathbb{Z} \\
& \Rightarrow {{2}^{2003}}=8+17k \\
\end{align}$
Hence the remainder obtained if we divide \[{{2}^{2003}}\] by 17 we will get the remainder as 8.
Complete step-by-step answer:
To find the remainder of ${{2}^{2003}}$ we have to simplify it first. Therefore it can also be written as,
\[\therefore {{2}^{2003}}={{2}^{\left( 2000+3 \right)}}\]
Now to solve further we should know the formula given below,
Formula:
\[{{a}^{m}}\times {{a}^{n}}={{a}^{m+n}}\]
By using the above formula, we can write the equation as,
\[\therefore {{2}^{2003}}={{2}^{2000}}\times {{2}^{3}}\]
Above equation can also be written as,
\[\therefore {{2}^{2003}}={{2}^{4\times 500}}\times {{2}^{3}}\]
As we have to divide ${{2}^{2003}}$ by 17 therefore we have to represent it in the form of 17, and for that, we have to find the power of 2 such that it will give the number nearer to 17.
As we know \[{{2}^{4}}=16\] and it is nearer to 17 therefore we can represent in terms of 17, therefore we will get,
To do that so we have to know the formula given below,
Formula:
\[{{a}^{m\times n}}={{\left( {{a}^{m}} \right)}^{n}}\]
Therefore we can write \[{{2}^{2003}}\] as,
\[\therefore {{2}^{2003}}={{\left( {{2}^{4}} \right)}^{500}}\times {{2}^{3}}\]
If we put \[{{2}^{4}}=16\] in the above equation we will get,
\[\therefore {{2}^{2003}}={{\left( 16 \right)}^{500}}\times {{2}^{3}}\]
Now we can replace 16 as (17 – 1) therefore we will get,
\[\therefore {{2}^{2003}}={{\left( 17-1 \right)}^{500}}\times {{2}^{3}}\]
\[\therefore {{2}^{2003}}=8{{\left( 17-1 \right)}^{500}}\]
Now we will use the formula given below to solve the above equation,
Formula:
\[{{\left( a+b \right)}^{n}}={}^{n}{{C}_{0}}{{a}^{n}}{{b}^{0}}+{}^{n}{{C}_{1}}{{a}^{\left( n-1 \right)}}{{b}^{1}}+{}^{n}{{C}_{2}}{{a}^{\left( n-2 \right)}}{{b}^{2}}+{}^{n}{{C}_{3}}{{a}^{\left( n-3 \right)}}{{b}^{3}}+..............................+{}^{n}{{C}_{(n-1)}}a{{b}^{\left( n-1 \right)}}+{}^{n}{{C}_{n}}{{b}^{n}}\]
By using above formula we can write,
\[\therefore {{2}^{2003}}=8\times \left[ {}^{500}{{C}_{0}}{{17}^{500}}{{\left( -1 \right)}^{0}}+{}^{500}{{C}_{1}}{{17}^{499}}{{\left( -1 \right)}^{1}}+..............................+{}^{500}{{C}_{499}}17{{\left( -1 \right)}^{499}}+{}^{500}{{C}_{500}}{{\left( -1 \right)}^{500}} \right]\]As we know \[{}^{500}{{C}_{0}}=1\], \[{}^{500}{{C}_{500}}=1\], and also the odd powers of -1 gives the value equal to -1 therefore we will get,
\[\therefore {{2}^{2003}}=8\times \underline{{{17}^{500}}+{}^{500}{{C}_{1}}{{17}^{499}}+..............................-{}^{500}{{C}_{499}}17}+1\]
If we observe the underlined part above we come to know that the underlined part is multiple of 17, as we know it will be difficult to write the equation by taking 17 common therefore we will assume it as ‘a’ after we take 17 common.
Therefore if we take 17 common we will get ‘17a’ as we have assumed the product part as ‘a’. Therefore we will get,
\[\therefore {{2}^{2003}}=8\times \left[ 17\times a+1 \right]\]
\[\therefore {{2}^{2003}}=8\times 17a+8\times 1\]
\[\therefore {{2}^{2003}}=8\times 17a+8\]
We know by Euclid's division lemma that if a and b are any two positive integers then there exist unique integers q and r such that $a=bq+r,0\le r\le b-1$, r is known as the remainder of the division of a by b.
Hence by Euclid’s division lemma, we have the remainder obtained if we divide \[{{2}^{2003}}\] by 17 we will get the remainder as 8.
Note: Alternative solution:
We know that if $a\equiv b\left( \bmod m \right)$, then a-b is divisible by m.
Since $16-\left( -1 \right)$ is divisible by 17, we have
$16\equiv -1\left( \bmod 17 \right)$
We know that if $a\equiv b\left( \bmod m \right)$, then ${{a}^{n}}\equiv {{b}^{n}}\left( \bmod m \right)$
Hence, we have
$\begin{align}
& {{16}^{500}}\equiv {{\left( -1 \right)}^{500}}\left( \bmod m \right) \\
& \Rightarrow {{2}^{2000}}\equiv 1\left( \bmod m \right) \\
\end{align}$
We know that $a\equiv b\left( \bmod m \right),c\equiv d\left( \bmod m \right)\Rightarrow ac\equiv bd\left( \bmod m \right)$
Also since 8-8 is divisible by 17, we have
$8\equiv 8\left( \bmod 17 \right)$
Hence, we have
$\begin{align}
& {{2}^{2000}}\times 8\equiv 8\left( \bmod k \right) \\
& \Rightarrow {{2}^{2003}}\equiv 8\left( \bmod k \right) \\
\end{align}$
Hence, we have
$\begin{align}
& {{2}^{2003}}-8=17k,k\in \mathbb{Z} \\
& \Rightarrow {{2}^{2003}}=8+17k \\
\end{align}$
Hence the remainder obtained if we divide \[{{2}^{2003}}\] by 17 we will get the remainder as 8.
Recently Updated Pages
JEE Repeater course 2026 for Class 12

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Electricity and Magnetism Explained: Key Concepts & Applications

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

Understanding the Electric Field of a Uniformly Charged Ring

Understanding Average and RMS Value in Electrical Circuits

