
The RMS speed of hydrogen molecules at room temperature is . At room temperature what will be the RMS speed of the oxygen molecules?
A.
B.
C.
D.
Answer
503.1k+ views
Hint:
According to the kinetic theory of matter, the molecules of a gas are always in a state of ceaseless motion with a frequent collision with each other. As the molecules collide there is a transfer of energy from one molecule to the other. Due to this transfer of energy, the molecules which gain energy their velocity increases, while which loses energy their velocity decreases.
Complete answer:
Step 1
As we study the different properties of gases, there are three types of molecular velocities about which we need to know.
They are:
Average velocity – At a particular temperature average velocity is the arithmetic mean of the different velocities of different molecules of the gas. From Maxwell’s equation, the mathematical expression for average velocity is given by where M is the molecular mass of the gas, R is the Universal gas constant and T is the absolute temperature.
Root mean-square velocity – At a particular temperature the square root of the arithmetic mean of the squares of velocities for different molecules of a gas is known as the root mean square velocity or RMS velocity of the gas. The value of RMS velocity is calculated with the help of a kinetic gas equation and is given by .
Most probable velocity – at a particular temperature the velocity possessed by the majority fraction of the molecules is known as the most probable velocity. The mathematical expression for the most probable velocity is given by .
Step 2
In the given question the rms velocity of hydrogen gas is and the molecular mass for hydrogen is .
We know,
Taking square on both sides, we have
Step 3
For oxygen molecules the molecular mass is .
Putting the value of RT we get,
Hence, we can find that it is option c) which is the correct answer for the given question.
Note:With the increase in temperature, more molecules have higher velocities and fewer will have lower velocities and vice-versa. At absolute zero, the molecules of gas become perfectly motionless and become nonexistent. Thus the absolute scale of temperature is always positive.
According to the kinetic theory of matter, the molecules of a gas are always in a state of ceaseless motion with a frequent collision with each other. As the molecules collide there is a transfer of energy from one molecule to the other. Due to this transfer of energy, the molecules which gain energy their velocity increases, while which loses energy their velocity decreases.
Complete answer:
Step 1
As we study the different properties of gases, there are three types of molecular velocities about which we need to know.
They are:
Average velocity – At a particular temperature average velocity is the arithmetic mean of the different velocities of different molecules of the gas. From Maxwell’s equation, the mathematical expression for average velocity is given by
Root mean-square velocity – At a particular temperature the square root of the arithmetic mean of the squares of velocities for different molecules of a gas is known as the root mean square velocity or RMS velocity of the gas. The value of RMS velocity is calculated with the help of a kinetic gas equation and is given by
Most probable velocity – at a particular temperature the velocity possessed by the majority fraction of the molecules is known as the most probable velocity. The mathematical expression for the most probable velocity is given by
Step 2
In the given question the rms velocity of hydrogen gas is
We know,
Taking square on both sides, we have
Step 3
For oxygen molecules the molecular mass is
Putting the value of RT we get,
Hence, we can find that it is option c) which is the correct answer for the given question.
Note:With the increase in temperature, more molecules have higher velocities and fewer will have lower velocities and vice-versa. At absolute zero, the molecules of gas become perfectly motionless and become nonexistent. Thus the absolute scale of temperature is always positive.
Recently Updated Pages
Master Class 4 Maths: Engaging Questions & Answers for Success

Master Class 4 English: Engaging Questions & Answers for Success

Master Class 4 Science: Engaging Questions & Answers for Success

Class 4 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Give 10 examples of unisexual and bisexual flowers

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE
