
The Schrodinger wave equation for hydrogen atom is:
\[{{\Psi }_{2s}}=\dfrac{1}{4\sqrt{2}\pi }{{\left( \dfrac{1}{{{a}_{0}}} \right)}^{3/2}}\left[ 2-\dfrac{{{r}_{0}}}{{{a}_{0}}} \right]{{e}^{-r/{{a}_{0}}}}\]
where, ${{a}_{0}}$ is Bohr radius. If the radial node in $2s$ be at ${{r}_{0}}$, then find $r$ in terms of ${{a}_{0}}$.
A.$\dfrac{{{a}_{0}}}{2}$
B.$2{{a}_{0}}$
C.$\sqrt{2}{{a}_{0}}$
D.$\dfrac{{{a}_{0}}}{\sqrt{2}}$
Answer
463.5k+ views
Hint:
Bohr radius is the distance between the nucleus and electron of an atom. The probability of an electron located at a particular point is given by the square value of the wave function. In this equation, ${{r}_{0}}$ is the radial node.
Complete step by step answer:
Here, it is given that the Schrodinger wave equation for hydrogen atom is:
\[{{\Psi }_{2s}}=\dfrac{1}{4\sqrt{2}\pi }{{\left( \dfrac{1}{{{a}_{0}}} \right)}^{3/2}}\left[ 2-\dfrac{{{r}_{0}}}{{{a}_{0}}} \right]{{e}^{-r/{{a}_{0}}}}\]
where, ${{a}_{0}}$ is Bohr radius, ${{r}_{0}}$ is the radial node and $\Psi $ is the wave function.
When wave function passes through zero, a node occurs. The electron has zero probability of being located at a node. The probability of an electron located at a particular point is given by the square value of the wave function. As we discussed that electron has zero probability of being located at a node, we can say that
\[|{{\Psi }_{2s}}{{|}^{2}}=0\]
Now, looking at the above equation, we can observe that, if the square of the value of wave function is equal to zero, then the value of $\left( 2-\dfrac{{{a}_{0}}}{{{r}_{0}}} \right)$ has to be equal to zero.
Since, $\dfrac{1}{4\sqrt{2}\pi }$ is a constant which cannot be equal to zero and the value of ${{\left( \dfrac{1}{{{a}_{0}}} \right)}^{3/2}}$ and ${{e}^{-r/{{a}_{0}}}}$ will always be greater than zero.
So, therefore, we can write
$2-\dfrac{{{r}_{0}}}{{{a}_{0}}}=0$
On further simplifying, we get,
$\Rightarrow {{r}_{0}}=2{{a}_{0}}$
Therefore, the correct option is (B) $2{{a}_{0}}$.
Additional information:
-Schrodinger wave equation is an equation that is used to calculate the wave function of a quantum – mechanical system. The wave function is used to define the state of the system at each spatial position and time.
-Wave function is defined as the quantum state of an isolated quantum system. It is denoted with a symbol, $\Psi $
Note: A wave function node generally occurs at a point where wave function is zero, that means, the electron has zero probability of being located at a node.
-Bohr radius is the most probable distance between the electron and the nucleus.
Bohr radius is the distance between the nucleus and electron of an atom. The probability of an electron located at a particular point is given by the square value of the wave function. In this equation, ${{r}_{0}}$ is the radial node.
Complete step by step answer:
Here, it is given that the Schrodinger wave equation for hydrogen atom is:
\[{{\Psi }_{2s}}=\dfrac{1}{4\sqrt{2}\pi }{{\left( \dfrac{1}{{{a}_{0}}} \right)}^{3/2}}\left[ 2-\dfrac{{{r}_{0}}}{{{a}_{0}}} \right]{{e}^{-r/{{a}_{0}}}}\]
where, ${{a}_{0}}$ is Bohr radius, ${{r}_{0}}$ is the radial node and $\Psi $ is the wave function.
When wave function passes through zero, a node occurs. The electron has zero probability of being located at a node. The probability of an electron located at a particular point is given by the square value of the wave function. As we discussed that electron has zero probability of being located at a node, we can say that
\[|{{\Psi }_{2s}}{{|}^{2}}=0\]
Now, looking at the above equation, we can observe that, if the square of the value of wave function is equal to zero, then the value of $\left( 2-\dfrac{{{a}_{0}}}{{{r}_{0}}} \right)$ has to be equal to zero.
Since, $\dfrac{1}{4\sqrt{2}\pi }$ is a constant which cannot be equal to zero and the value of ${{\left( \dfrac{1}{{{a}_{0}}} \right)}^{3/2}}$ and ${{e}^{-r/{{a}_{0}}}}$ will always be greater than zero.
So, therefore, we can write
$2-\dfrac{{{r}_{0}}}{{{a}_{0}}}=0$
On further simplifying, we get,
$\Rightarrow {{r}_{0}}=2{{a}_{0}}$
Therefore, the correct option is (B) $2{{a}_{0}}$.
Additional information:
-Schrodinger wave equation is an equation that is used to calculate the wave function of a quantum – mechanical system. The wave function is used to define the state of the system at each spatial position and time.
-Wave function is defined as the quantum state of an isolated quantum system. It is denoted with a symbol, $\Psi $
Note: A wave function node generally occurs at a point where wave function is zero, that means, the electron has zero probability of being located at a node.
-Bohr radius is the most probable distance between the electron and the nucleus.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Trending doubts
Who is Mukesh What is his dream Why does it look like class 12 english CBSE

Who was RajKumar Shukla Why did he come to Lucknow class 12 english CBSE

The word Maasai is derived from the word Maa Maasai class 12 social science CBSE

What is the Full Form of PVC, PET, HDPE, LDPE, PP and PS ?

Which country did Danny Casey play for class 12 english CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE
