
The side of a square is 10 cm. Find the area between the inscribed and circumscribed circle of the square.
Answer
611.1k+ views
Hint: Use the information, for inscribed circle: radius $ = \dfrac{{{\text{side of square}}}}{2} \Rightarrow {r_1} = \dfrac{{10}}{2} = 5cm$ and for circumscribed circle: diameter of the circle = diagonal of the square. Also, the area between these circles is nothing but the difference of their area.
Complete step-by-step answer:
For inscribed circle: radius$ = \dfrac{{{\text{side of square}}}}{2} \Rightarrow {r_1} = \dfrac{{10}}{2} = 5cm$.
We know that, area of the circle is given by $\pi {r^2}$.
So, the area of the inscribed circle is $\pi {r_1}^2 = \pi \times {5^2} = 25\pi c{m^2}$.
For circumscribed circle: diameter of the circle = diagonal of the square.
We can use Pythagoras theorem to find the length of the diagonal of the square.
${(diagonal)^2} = {10^2} + {10^2} = 2 \times 100 \Rightarrow diagonal = 10\sqrt 2 cm$.
Then, radius $ = \dfrac{{diagonal}}{2} \Rightarrow {r_2} = \dfrac{{10\sqrt 2 }}{2} = 5\sqrt 2 cm$.
Now, again we can use the formula of area of the circle for circumscribed circle which is $\pi {r_2}^2 = \pi \times {(5\sqrt 2 )^2} = 50\pi c{m^2}$.
Now, the area between these circles is nothing but the difference of their area which is $50\pi - 25\pi = 25\pi c{m^2} \approx 78.511c{m^2}$.
Note: It’s preferable, not to put the value of $\pi $ in the middle of the solution. It’ll create complex calculations which we don’t want. Better to put the value in the final answer as we did in this solution.
Complete step-by-step answer:
For inscribed circle: radius$ = \dfrac{{{\text{side of square}}}}{2} \Rightarrow {r_1} = \dfrac{{10}}{2} = 5cm$.
We know that, area of the circle is given by $\pi {r^2}$.
So, the area of the inscribed circle is $\pi {r_1}^2 = \pi \times {5^2} = 25\pi c{m^2}$.
For circumscribed circle: diameter of the circle = diagonal of the square.
We can use Pythagoras theorem to find the length of the diagonal of the square.
${(diagonal)^2} = {10^2} + {10^2} = 2 \times 100 \Rightarrow diagonal = 10\sqrt 2 cm$.
Then, radius $ = \dfrac{{diagonal}}{2} \Rightarrow {r_2} = \dfrac{{10\sqrt 2 }}{2} = 5\sqrt 2 cm$.
Now, again we can use the formula of area of the circle for circumscribed circle which is $\pi {r_2}^2 = \pi \times {(5\sqrt 2 )^2} = 50\pi c{m^2}$.
Now, the area between these circles is nothing but the difference of their area which is $50\pi - 25\pi = 25\pi c{m^2} \approx 78.511c{m^2}$.
Note: It’s preferable, not to put the value of $\pi $ in the middle of the solution. It’ll create complex calculations which we don’t want. Better to put the value in the final answer as we did in this solution.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

A moving boat is observed from the top of a 150 m high class 10 maths CBSE

