![SearchIcon](https://vmkt.vedantu.com/vmkt/PROD/png/bdcdbbd8-08a7-4688-98e6-4aa54e5e0800-1733305962725-4102606384256179.png)
The side of a square is 10 cm. Find the area between the inscribed and circumscribed circle of the square.
![seo images](https://www.vedantu.com/question-sets/792e0016-5491-46eb-99b3-82c9afdd52f51693842315513493068.png)
Answer
502.8k+ views
Hint: Use the information, for inscribed circle: radius $ = \dfrac{{{\text{side of square}}}}{2} \Rightarrow {r_1} = \dfrac{{10}}{2} = 5cm$ and for circumscribed circle: diameter of the circle = diagonal of the square. Also, the area between these circles is nothing but the difference of their area.
Complete step-by-step answer:
For inscribed circle: radius$ = \dfrac{{{\text{side of square}}}}{2} \Rightarrow {r_1} = \dfrac{{10}}{2} = 5cm$.
We know that, area of the circle is given by $\pi {r^2}$.
So, the area of the inscribed circle is $\pi {r_1}^2 = \pi \times {5^2} = 25\pi c{m^2}$.
For circumscribed circle: diameter of the circle = diagonal of the square.
We can use Pythagoras theorem to find the length of the diagonal of the square.
${(diagonal)^2} = {10^2} + {10^2} = 2 \times 100 \Rightarrow diagonal = 10\sqrt 2 cm$.
Then, radius $ = \dfrac{{diagonal}}{2} \Rightarrow {r_2} = \dfrac{{10\sqrt 2 }}{2} = 5\sqrt 2 cm$.
Now, again we can use the formula of area of the circle for circumscribed circle which is $\pi {r_2}^2 = \pi \times {(5\sqrt 2 )^2} = 50\pi c{m^2}$.
Now, the area between these circles is nothing but the difference of their area which is $50\pi - 25\pi = 25\pi c{m^2} \approx 78.511c{m^2}$.
Note: It’s preferable, not to put the value of $\pi $ in the middle of the solution. It’ll create complex calculations which we don’t want. Better to put the value in the final answer as we did in this solution.
Complete step-by-step answer:
For inscribed circle: radius$ = \dfrac{{{\text{side of square}}}}{2} \Rightarrow {r_1} = \dfrac{{10}}{2} = 5cm$.
We know that, area of the circle is given by $\pi {r^2}$.
So, the area of the inscribed circle is $\pi {r_1}^2 = \pi \times {5^2} = 25\pi c{m^2}$.
For circumscribed circle: diameter of the circle = diagonal of the square.
We can use Pythagoras theorem to find the length of the diagonal of the square.
${(diagonal)^2} = {10^2} + {10^2} = 2 \times 100 \Rightarrow diagonal = 10\sqrt 2 cm$.
Then, radius $ = \dfrac{{diagonal}}{2} \Rightarrow {r_2} = \dfrac{{10\sqrt 2 }}{2} = 5\sqrt 2 cm$.
Now, again we can use the formula of area of the circle for circumscribed circle which is $\pi {r_2}^2 = \pi \times {(5\sqrt 2 )^2} = 50\pi c{m^2}$.
Now, the area between these circles is nothing but the difference of their area which is $50\pi - 25\pi = 25\pi c{m^2} \approx 78.511c{m^2}$.
Note: It’s preferable, not to put the value of $\pi $ in the middle of the solution. It’ll create complex calculations which we don’t want. Better to put the value in the final answer as we did in this solution.
Recently Updated Pages
Master Class 11 Accountancy: Engaging Questions & Answers for Success
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
What percentage of the area in India is covered by class 10 social science CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
The area of a 6m wide road outside a garden in all class 10 maths CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
What is the electric flux through a cube of side 1 class 10 physics CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
If one root of x2 x k 0 maybe the square of the other class 10 maths CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
The radius and height of a cylinder are in the ratio class 10 maths CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Trending doubts
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Why is there a time difference of about 5 hours between class 10 social science CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Change the following sentences into negative and interrogative class 10 english CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
What constitutes the central nervous system How are class 10 biology CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Write a letter to the principal requesting him to grant class 10 english CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Explain the Treaty of Vienna of 1815 class 10 social science CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)