Answer
Verified
469.5k+ views
Hint: Since, the sides of the triangle are in A.P, let $d$ be the common difference of A.P and rewrite the sides as $a = b - d$, $b$ and $c = b + d$. Then, substitute the values in the given equation $\cos \alpha = \dfrac{a}{{b + c}}$, $\cos \beta = \dfrac{b}{{c + a}}$, $\cos \gamma = \dfrac{c}{{a + b}}$ and simplify using the trigonometric formulas. Further, find the value of ${\tan ^2}\dfrac{\alpha }{2} + {\tan ^2}\dfrac{\gamma }{2}$.
Complete step-by-step answer:
We are given that the sides of a triangle are in A.P
Let $d$ be the common difference of A.P
Then, the sides of A.P. can be written as $a = b - d$, $b$ and $c = b + d$
Also, we are given than $\cos \alpha = \dfrac{a}{{b + c}}$
Substitute the value of $a,b,c$ in the equation.
$\cos \alpha = \dfrac{{b - d}}{{b + b + d}}$
$ \Rightarrow \cos \alpha = \dfrac{{b - d}}{{2b + d}}$ (1)
Similarly, we will write the value of $\cos \beta = \dfrac{b}{{c + a}}$
Hence, we get,
$
\cos \beta = \dfrac{b}{{b + d + b - d}} \\
\Rightarrow \cos \beta = \dfrac{b}{{2b}} \\
\Rightarrow \cos \beta = \dfrac{1}{2} \\
\Rightarrow \beta = {60^ \circ } \\
$
Now, we will write the value of $\cos \gamma = \dfrac{c}{{a + b}}$
$
\cos \gamma = \dfrac{c}{{a + b}} \\
\Rightarrow \cos \gamma = \dfrac{{b + d}}{{b - d + b}} \\
$
$ \Rightarrow \cos \gamma = \dfrac{{b + d}}{{2b - d}}$ (2)
Now, we know that $\cos \left( {2x} \right) = \dfrac{{1 - {{\tan }^2}x}}{{1 + {{\tan }^2}x}}$
Therefore from equation (1), we have,
$
\cos \alpha = \dfrac{{1 - {{\tan }^2}\dfrac{\alpha }{2}}}{{1 + {{\tan }^2}\dfrac{\alpha }{2}}} \\
\Rightarrow \dfrac{{b - d}}{{2b + d}} = \dfrac{{1 - {{\tan }^2}\dfrac{\alpha }{2}}}{{1 + {{\tan }^2}\dfrac{\alpha }{2}}} \\
$
We will solve the above equation to find the value of ${\tan ^2}\dfrac{\alpha }{2}$
Use componendo and dividendo rules to simplify the equation.
$
\dfrac{{b - d - 2b - d}}{{b - d + 2b + d}} = \dfrac{{1 - {{\tan }^2}\dfrac{\alpha }{2} - 1 - {{\tan }^2}\dfrac{\alpha }{2}}}{{1 - {{\tan }^2}\dfrac{\alpha }{2} + 1 + {{\tan }^2}\dfrac{\alpha }{2}}} \\
\Rightarrow \dfrac{{ - b - 2d}}{{3b}} = \dfrac{{ - 2{{\tan }^2}\dfrac{\alpha }{2}}}{2} \\
\Rightarrow {\tan ^2}\dfrac{\alpha }{2} = \dfrac{{2d + b}}{{3b}} \\
$
Similarly, we will find the value of ${\tan ^2}\dfrac{\gamma }{2}$ from equation (2)
$
\Rightarrow \cos \gamma = \dfrac{{1 - {{\tan }^2}\dfrac{\gamma }{2}}}{{1 + {{\tan }^2}\dfrac{\alpha }{2}}} \\
\Rightarrow \dfrac{{b + d}}{{2b - d}} = \dfrac{{1 - {{\tan }^2}\dfrac{\gamma }{2}}}{{1 + {{\tan }^2}\dfrac{\gamma }{2}}} \\
$
Use componendo and dividendo rules to simplify the equation.
$
\dfrac{{b + d - 2b + d}}{{b + d + 2b - d}} = \dfrac{{1 - {{\tan }^2}\dfrac{\gamma }{2} - 1 - {{\tan }^2}\dfrac{\gamma }{2}}}{{1 - {{\tan }^2}\dfrac{\gamma }{2} + 1 + {{\tan }^2}\dfrac{\gamma }{2}}} \\
\Rightarrow \dfrac{{ - b + 2d}}{{3b}} = \dfrac{{ - 2{{\tan }^2}\dfrac{\gamma }{2}}}{2} \\
\Rightarrow {\tan ^2}\dfrac{\gamma }{2} = \dfrac{{b - 2d}}{{3b}} \\
$
We will now substitute the values of ${\tan ^2}\dfrac{\alpha }{2}$ and ${\tan ^2}\dfrac{\gamma }{2}$ in the expression ${\tan ^2}\dfrac{\alpha }{2} + {\tan ^2}\dfrac{\gamma }{2}$
$
\dfrac{{2d + b}}{{3b}} + \dfrac{{b - 2d}}{{3b}} = \dfrac{{2d + b + b - 2d}}{{3b}} \\
\Rightarrow \dfrac{{2b}}{{3b}} \\
\Rightarrow \dfrac{2}{3} \\
$
Hence, the value of ${\tan ^2}\dfrac{\alpha }{2} + {\tan ^2}\dfrac{\gamma }{2}$ is $\dfrac{2}{3}$.
Thus, option D is correct.
Note: Here, we have used the formula of $\cos \left( {2x} \right) = \dfrac{{1 - {{\tan }^2}x}}{{1 + {{\tan }^2}x}}$, where the angle gets half. Similarly, we have $\cos \left( {2x} \right) = {\cos ^2}x - {\sin ^2}x$, $\cos \left( {2x} \right) = 1 - 2{\sin ^2}x$ and $\cos \left( {2x} \right) = 2{\cos ^2}x - 1$. Use the formula according to the condition in the question.
Complete step-by-step answer:
We are given that the sides of a triangle are in A.P
Let $d$ be the common difference of A.P
Then, the sides of A.P. can be written as $a = b - d$, $b$ and $c = b + d$
Also, we are given than $\cos \alpha = \dfrac{a}{{b + c}}$
Substitute the value of $a,b,c$ in the equation.
$\cos \alpha = \dfrac{{b - d}}{{b + b + d}}$
$ \Rightarrow \cos \alpha = \dfrac{{b - d}}{{2b + d}}$ (1)
Similarly, we will write the value of $\cos \beta = \dfrac{b}{{c + a}}$
Hence, we get,
$
\cos \beta = \dfrac{b}{{b + d + b - d}} \\
\Rightarrow \cos \beta = \dfrac{b}{{2b}} \\
\Rightarrow \cos \beta = \dfrac{1}{2} \\
\Rightarrow \beta = {60^ \circ } \\
$
Now, we will write the value of $\cos \gamma = \dfrac{c}{{a + b}}$
$
\cos \gamma = \dfrac{c}{{a + b}} \\
\Rightarrow \cos \gamma = \dfrac{{b + d}}{{b - d + b}} \\
$
$ \Rightarrow \cos \gamma = \dfrac{{b + d}}{{2b - d}}$ (2)
Now, we know that $\cos \left( {2x} \right) = \dfrac{{1 - {{\tan }^2}x}}{{1 + {{\tan }^2}x}}$
Therefore from equation (1), we have,
$
\cos \alpha = \dfrac{{1 - {{\tan }^2}\dfrac{\alpha }{2}}}{{1 + {{\tan }^2}\dfrac{\alpha }{2}}} \\
\Rightarrow \dfrac{{b - d}}{{2b + d}} = \dfrac{{1 - {{\tan }^2}\dfrac{\alpha }{2}}}{{1 + {{\tan }^2}\dfrac{\alpha }{2}}} \\
$
We will solve the above equation to find the value of ${\tan ^2}\dfrac{\alpha }{2}$
Use componendo and dividendo rules to simplify the equation.
$
\dfrac{{b - d - 2b - d}}{{b - d + 2b + d}} = \dfrac{{1 - {{\tan }^2}\dfrac{\alpha }{2} - 1 - {{\tan }^2}\dfrac{\alpha }{2}}}{{1 - {{\tan }^2}\dfrac{\alpha }{2} + 1 + {{\tan }^2}\dfrac{\alpha }{2}}} \\
\Rightarrow \dfrac{{ - b - 2d}}{{3b}} = \dfrac{{ - 2{{\tan }^2}\dfrac{\alpha }{2}}}{2} \\
\Rightarrow {\tan ^2}\dfrac{\alpha }{2} = \dfrac{{2d + b}}{{3b}} \\
$
Similarly, we will find the value of ${\tan ^2}\dfrac{\gamma }{2}$ from equation (2)
$
\Rightarrow \cos \gamma = \dfrac{{1 - {{\tan }^2}\dfrac{\gamma }{2}}}{{1 + {{\tan }^2}\dfrac{\alpha }{2}}} \\
\Rightarrow \dfrac{{b + d}}{{2b - d}} = \dfrac{{1 - {{\tan }^2}\dfrac{\gamma }{2}}}{{1 + {{\tan }^2}\dfrac{\gamma }{2}}} \\
$
Use componendo and dividendo rules to simplify the equation.
$
\dfrac{{b + d - 2b + d}}{{b + d + 2b - d}} = \dfrac{{1 - {{\tan }^2}\dfrac{\gamma }{2} - 1 - {{\tan }^2}\dfrac{\gamma }{2}}}{{1 - {{\tan }^2}\dfrac{\gamma }{2} + 1 + {{\tan }^2}\dfrac{\gamma }{2}}} \\
\Rightarrow \dfrac{{ - b + 2d}}{{3b}} = \dfrac{{ - 2{{\tan }^2}\dfrac{\gamma }{2}}}{2} \\
\Rightarrow {\tan ^2}\dfrac{\gamma }{2} = \dfrac{{b - 2d}}{{3b}} \\
$
We will now substitute the values of ${\tan ^2}\dfrac{\alpha }{2}$ and ${\tan ^2}\dfrac{\gamma }{2}$ in the expression ${\tan ^2}\dfrac{\alpha }{2} + {\tan ^2}\dfrac{\gamma }{2}$
$
\dfrac{{2d + b}}{{3b}} + \dfrac{{b - 2d}}{{3b}} = \dfrac{{2d + b + b - 2d}}{{3b}} \\
\Rightarrow \dfrac{{2b}}{{3b}} \\
\Rightarrow \dfrac{2}{3} \\
$
Hence, the value of ${\tan ^2}\dfrac{\alpha }{2} + {\tan ^2}\dfrac{\gamma }{2}$ is $\dfrac{2}{3}$.
Thus, option D is correct.
Note: Here, we have used the formula of $\cos \left( {2x} \right) = \dfrac{{1 - {{\tan }^2}x}}{{1 + {{\tan }^2}x}}$, where the angle gets half. Similarly, we have $\cos \left( {2x} \right) = {\cos ^2}x - {\sin ^2}x$, $\cos \left( {2x} \right) = 1 - 2{\sin ^2}x$ and $\cos \left( {2x} \right) = 2{\cos ^2}x - 1$. Use the formula according to the condition in the question.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Give 10 examples for herbs , shrubs , climbers , creepers