The sides of a triangle $ABC$ are $a,b$ and $c$ with $A,B$ and $C$as their opposite vertices respectively.
If $2b = 3a$ and ${\tan ^2}A = \dfrac{3}{5},$prove that there are two values of the third side, one of which is double the other.
Answer
Verified
511.8k+ views
Hint: Using the equation ${\tan ^2}A = \dfrac{3}{5},$find the value of $\cos A$ and then apply cosine rule.
From the question:
${\tan ^2}A = \dfrac{3}{5}$and we know that $1 + {\tan ^2}A = {\sec ^2}A$,
$
\Rightarrow {\sec ^2}A = 1 + \dfrac{3}{5}, \\
\Rightarrow {\sec ^2}A = \dfrac{8}{5}. \\
$
Further, we know that ${\cos ^2}A = \dfrac{1}{{{{\sec }^2}A}},$
$
\Rightarrow {\cos ^2}A = \dfrac{5}{8}, \\
\Rightarrow \cos A = \sqrt {\dfrac{5}{8}} , \\
\Rightarrow \cos A = \dfrac{{\sqrt 5 }}{{2\sqrt 2 }}. \\
$
Now, applying cosine rule,
$ \Rightarrow {b^2} + {c^2} - {a^2} = 2bc\cos A.$
From question, we know that $2b = 3a.$ Putting $a = \dfrac{{2b}}{3}$ and $\cos A = \dfrac{{\sqrt 5 }}{{2\sqrt 2 }}$in above equation:
$
\Rightarrow {b^2} + {c^2} - \dfrac{{4{b^2}}}{9} = 2bc \times \dfrac{{\sqrt 5 }}{{2\sqrt 2 }}, \\
\Rightarrow {c^2} + \dfrac{{5{b^2}}}{9} = \sqrt {\dfrac{5}{2}} bc, \\
\Rightarrow {c^2} - \sqrt {\dfrac{5}{2}} bc + \dfrac{{5{b^2}}}{9} = 0. \\
$
Above equation is a quadratic equation in $c.$ Let ${c_1},{c_2}$ be the root of the equation. Then,
Sum of roots $ = {c_1} + {c_2} = \sqrt {\dfrac{5}{2}} b .....(i)$
Product of root $ = {c_1}{c_2} = \dfrac{{5{b^2}}}{9}.$
We know that, ${({c_1} - {c_2})^2} = {({c_1} + {c_2})^2} - 4{c_1}{c_2}.$Putting values from above:
$
\Rightarrow {({c_1} - {c_2})^2} = \dfrac{{5{b^2}}}{2} - 4 \times \dfrac{{5{b^2}}}{9}, \\
\Rightarrow {({c_1} - {c_2})^2} = \dfrac{{5{b^2}}}{{18}}, \\
\Rightarrow {c_1} - {c_2} = \dfrac{1}{3}\sqrt {\dfrac{5}{2}} b .....(ii) \\
$
Now adding equation $(i)$and $(ii)$, we have:
$
\Rightarrow 2{c_1} = \sqrt {\dfrac{5}{2}} b + \dfrac{1}{3}\sqrt {\dfrac{5}{2}} b, \\
\Rightarrow 2{c_1} = \dfrac{{4b}}{3}\sqrt {\dfrac{5}{2}} , \\
\Rightarrow {c_1} = \dfrac{{2b}}{3}\sqrt {\dfrac{5}{2}} . \\
$
Putting the value of ${c_1}$in equation $(i)$,we’ll get:
$
\Rightarrow {c_1} + {c_2} = \sqrt {\dfrac{5}{2}} b, \\
\Rightarrow {c_2} = \sqrt {\dfrac{5}{2}} b - {c_1}, \\
\Rightarrow {c_2} = \sqrt {\dfrac{5}{2}} b - \dfrac{{2b}}{3}\sqrt {\dfrac{5}{2}} , \\
\Rightarrow {c_2} = \dfrac{b}{3}\sqrt {\dfrac{5}{2}} . \\
$
So, we have ${c_1} = \dfrac{{2b}}{3}\sqrt {\dfrac{5}{2}} $and ${c_2} = \dfrac{b}{3}\sqrt {\dfrac{5}{2}} $. From this we can say that ${c_1} = 2{c_2}.$
Therefore, we have two values of the third side in which one is twice the other. This is the required proof.
Note: Whenever two sides of a triangle are given along with the angle made by these two sides, we can use cosine rule to find out the third side.
From the question:
${\tan ^2}A = \dfrac{3}{5}$and we know that $1 + {\tan ^2}A = {\sec ^2}A$,
$
\Rightarrow {\sec ^2}A = 1 + \dfrac{3}{5}, \\
\Rightarrow {\sec ^2}A = \dfrac{8}{5}. \\
$
Further, we know that ${\cos ^2}A = \dfrac{1}{{{{\sec }^2}A}},$
$
\Rightarrow {\cos ^2}A = \dfrac{5}{8}, \\
\Rightarrow \cos A = \sqrt {\dfrac{5}{8}} , \\
\Rightarrow \cos A = \dfrac{{\sqrt 5 }}{{2\sqrt 2 }}. \\
$
Now, applying cosine rule,
$ \Rightarrow {b^2} + {c^2} - {a^2} = 2bc\cos A.$
From question, we know that $2b = 3a.$ Putting $a = \dfrac{{2b}}{3}$ and $\cos A = \dfrac{{\sqrt 5 }}{{2\sqrt 2 }}$in above equation:
$
\Rightarrow {b^2} + {c^2} - \dfrac{{4{b^2}}}{9} = 2bc \times \dfrac{{\sqrt 5 }}{{2\sqrt 2 }}, \\
\Rightarrow {c^2} + \dfrac{{5{b^2}}}{9} = \sqrt {\dfrac{5}{2}} bc, \\
\Rightarrow {c^2} - \sqrt {\dfrac{5}{2}} bc + \dfrac{{5{b^2}}}{9} = 0. \\
$
Above equation is a quadratic equation in $c.$ Let ${c_1},{c_2}$ be the root of the equation. Then,
Sum of roots $ = {c_1} + {c_2} = \sqrt {\dfrac{5}{2}} b .....(i)$
Product of root $ = {c_1}{c_2} = \dfrac{{5{b^2}}}{9}.$
We know that, ${({c_1} - {c_2})^2} = {({c_1} + {c_2})^2} - 4{c_1}{c_2}.$Putting values from above:
$
\Rightarrow {({c_1} - {c_2})^2} = \dfrac{{5{b^2}}}{2} - 4 \times \dfrac{{5{b^2}}}{9}, \\
\Rightarrow {({c_1} - {c_2})^2} = \dfrac{{5{b^2}}}{{18}}, \\
\Rightarrow {c_1} - {c_2} = \dfrac{1}{3}\sqrt {\dfrac{5}{2}} b .....(ii) \\
$
Now adding equation $(i)$and $(ii)$, we have:
$
\Rightarrow 2{c_1} = \sqrt {\dfrac{5}{2}} b + \dfrac{1}{3}\sqrt {\dfrac{5}{2}} b, \\
\Rightarrow 2{c_1} = \dfrac{{4b}}{3}\sqrt {\dfrac{5}{2}} , \\
\Rightarrow {c_1} = \dfrac{{2b}}{3}\sqrt {\dfrac{5}{2}} . \\
$
Putting the value of ${c_1}$in equation $(i)$,we’ll get:
$
\Rightarrow {c_1} + {c_2} = \sqrt {\dfrac{5}{2}} b, \\
\Rightarrow {c_2} = \sqrt {\dfrac{5}{2}} b - {c_1}, \\
\Rightarrow {c_2} = \sqrt {\dfrac{5}{2}} b - \dfrac{{2b}}{3}\sqrt {\dfrac{5}{2}} , \\
\Rightarrow {c_2} = \dfrac{b}{3}\sqrt {\dfrac{5}{2}} . \\
$
So, we have ${c_1} = \dfrac{{2b}}{3}\sqrt {\dfrac{5}{2}} $and ${c_2} = \dfrac{b}{3}\sqrt {\dfrac{5}{2}} $. From this we can say that ${c_1} = 2{c_2}.$
Therefore, we have two values of the third side in which one is twice the other. This is the required proof.
Note: Whenever two sides of a triangle are given along with the angle made by these two sides, we can use cosine rule to find out the third side.
Recently Updated Pages
What percentage of the area in India is covered by class 10 social science CBSE
The area of a 6m wide road outside a garden in all class 10 maths CBSE
What is the electric flux through a cube of side 1 class 10 physics CBSE
If one root of x2 x k 0 maybe the square of the other class 10 maths CBSE
The radius and height of a cylinder are in the ratio class 10 maths CBSE
An almirah is sold for 5400 Rs after allowing a discount class 10 maths CBSE
Trending doubts
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Write a letter to the principal requesting him to grant class 10 english CBSE
Explain the Treaty of Vienna of 1815 class 10 social science CBSE
Write an application to the principal requesting five class 10 english CBSE