
The sides of a triangle $ABC$ are $a,b$ and $c$ with $A,B$ and $C$as their opposite vertices respectively.
If $2b = 3a$ and ${\tan ^2}A = \dfrac{3}{5},$prove that there are two values of the third side, one of which is double the other.
Answer
622.2k+ views
Hint: Using the equation ${\tan ^2}A = \dfrac{3}{5},$find the value of $\cos A$ and then apply cosine rule.
From the question:
${\tan ^2}A = \dfrac{3}{5}$and we know that $1 + {\tan ^2}A = {\sec ^2}A$,
$
\Rightarrow {\sec ^2}A = 1 + \dfrac{3}{5}, \\
\Rightarrow {\sec ^2}A = \dfrac{8}{5}. \\
$
Further, we know that ${\cos ^2}A = \dfrac{1}{{{{\sec }^2}A}},$
$
\Rightarrow {\cos ^2}A = \dfrac{5}{8}, \\
\Rightarrow \cos A = \sqrt {\dfrac{5}{8}} , \\
\Rightarrow \cos A = \dfrac{{\sqrt 5 }}{{2\sqrt 2 }}. \\
$
Now, applying cosine rule,
$ \Rightarrow {b^2} + {c^2} - {a^2} = 2bc\cos A.$
From question, we know that $2b = 3a.$ Putting $a = \dfrac{{2b}}{3}$ and $\cos A = \dfrac{{\sqrt 5 }}{{2\sqrt 2 }}$in above equation:
$
\Rightarrow {b^2} + {c^2} - \dfrac{{4{b^2}}}{9} = 2bc \times \dfrac{{\sqrt 5 }}{{2\sqrt 2 }}, \\
\Rightarrow {c^2} + \dfrac{{5{b^2}}}{9} = \sqrt {\dfrac{5}{2}} bc, \\
\Rightarrow {c^2} - \sqrt {\dfrac{5}{2}} bc + \dfrac{{5{b^2}}}{9} = 0. \\
$
Above equation is a quadratic equation in $c.$ Let ${c_1},{c_2}$ be the root of the equation. Then,
Sum of roots $ = {c_1} + {c_2} = \sqrt {\dfrac{5}{2}} b .....(i)$
Product of root $ = {c_1}{c_2} = \dfrac{{5{b^2}}}{9}.$
We know that, ${({c_1} - {c_2})^2} = {({c_1} + {c_2})^2} - 4{c_1}{c_2}.$Putting values from above:
$
\Rightarrow {({c_1} - {c_2})^2} = \dfrac{{5{b^2}}}{2} - 4 \times \dfrac{{5{b^2}}}{9}, \\
\Rightarrow {({c_1} - {c_2})^2} = \dfrac{{5{b^2}}}{{18}}, \\
\Rightarrow {c_1} - {c_2} = \dfrac{1}{3}\sqrt {\dfrac{5}{2}} b .....(ii) \\
$
Now adding equation $(i)$and $(ii)$, we have:
$
\Rightarrow 2{c_1} = \sqrt {\dfrac{5}{2}} b + \dfrac{1}{3}\sqrt {\dfrac{5}{2}} b, \\
\Rightarrow 2{c_1} = \dfrac{{4b}}{3}\sqrt {\dfrac{5}{2}} , \\
\Rightarrow {c_1} = \dfrac{{2b}}{3}\sqrt {\dfrac{5}{2}} . \\
$
Putting the value of ${c_1}$in equation $(i)$,we’ll get:
$
\Rightarrow {c_1} + {c_2} = \sqrt {\dfrac{5}{2}} b, \\
\Rightarrow {c_2} = \sqrt {\dfrac{5}{2}} b - {c_1}, \\
\Rightarrow {c_2} = \sqrt {\dfrac{5}{2}} b - \dfrac{{2b}}{3}\sqrt {\dfrac{5}{2}} , \\
\Rightarrow {c_2} = \dfrac{b}{3}\sqrt {\dfrac{5}{2}} . \\
$
So, we have ${c_1} = \dfrac{{2b}}{3}\sqrt {\dfrac{5}{2}} $and ${c_2} = \dfrac{b}{3}\sqrt {\dfrac{5}{2}} $. From this we can say that ${c_1} = 2{c_2}.$
Therefore, we have two values of the third side in which one is twice the other. This is the required proof.
Note: Whenever two sides of a triangle are given along with the angle made by these two sides, we can use cosine rule to find out the third side.
From the question:
${\tan ^2}A = \dfrac{3}{5}$and we know that $1 + {\tan ^2}A = {\sec ^2}A$,
$
\Rightarrow {\sec ^2}A = 1 + \dfrac{3}{5}, \\
\Rightarrow {\sec ^2}A = \dfrac{8}{5}. \\
$
Further, we know that ${\cos ^2}A = \dfrac{1}{{{{\sec }^2}A}},$
$
\Rightarrow {\cos ^2}A = \dfrac{5}{8}, \\
\Rightarrow \cos A = \sqrt {\dfrac{5}{8}} , \\
\Rightarrow \cos A = \dfrac{{\sqrt 5 }}{{2\sqrt 2 }}. \\
$
Now, applying cosine rule,
$ \Rightarrow {b^2} + {c^2} - {a^2} = 2bc\cos A.$
From question, we know that $2b = 3a.$ Putting $a = \dfrac{{2b}}{3}$ and $\cos A = \dfrac{{\sqrt 5 }}{{2\sqrt 2 }}$in above equation:
$
\Rightarrow {b^2} + {c^2} - \dfrac{{4{b^2}}}{9} = 2bc \times \dfrac{{\sqrt 5 }}{{2\sqrt 2 }}, \\
\Rightarrow {c^2} + \dfrac{{5{b^2}}}{9} = \sqrt {\dfrac{5}{2}} bc, \\
\Rightarrow {c^2} - \sqrt {\dfrac{5}{2}} bc + \dfrac{{5{b^2}}}{9} = 0. \\
$
Above equation is a quadratic equation in $c.$ Let ${c_1},{c_2}$ be the root of the equation. Then,
Sum of roots $ = {c_1} + {c_2} = \sqrt {\dfrac{5}{2}} b .....(i)$
Product of root $ = {c_1}{c_2} = \dfrac{{5{b^2}}}{9}.$
We know that, ${({c_1} - {c_2})^2} = {({c_1} + {c_2})^2} - 4{c_1}{c_2}.$Putting values from above:
$
\Rightarrow {({c_1} - {c_2})^2} = \dfrac{{5{b^2}}}{2} - 4 \times \dfrac{{5{b^2}}}{9}, \\
\Rightarrow {({c_1} - {c_2})^2} = \dfrac{{5{b^2}}}{{18}}, \\
\Rightarrow {c_1} - {c_2} = \dfrac{1}{3}\sqrt {\dfrac{5}{2}} b .....(ii) \\
$
Now adding equation $(i)$and $(ii)$, we have:
$
\Rightarrow 2{c_1} = \sqrt {\dfrac{5}{2}} b + \dfrac{1}{3}\sqrt {\dfrac{5}{2}} b, \\
\Rightarrow 2{c_1} = \dfrac{{4b}}{3}\sqrt {\dfrac{5}{2}} , \\
\Rightarrow {c_1} = \dfrac{{2b}}{3}\sqrt {\dfrac{5}{2}} . \\
$
Putting the value of ${c_1}$in equation $(i)$,we’ll get:
$
\Rightarrow {c_1} + {c_2} = \sqrt {\dfrac{5}{2}} b, \\
\Rightarrow {c_2} = \sqrt {\dfrac{5}{2}} b - {c_1}, \\
\Rightarrow {c_2} = \sqrt {\dfrac{5}{2}} b - \dfrac{{2b}}{3}\sqrt {\dfrac{5}{2}} , \\
\Rightarrow {c_2} = \dfrac{b}{3}\sqrt {\dfrac{5}{2}} . \\
$
So, we have ${c_1} = \dfrac{{2b}}{3}\sqrt {\dfrac{5}{2}} $and ${c_2} = \dfrac{b}{3}\sqrt {\dfrac{5}{2}} $. From this we can say that ${c_1} = 2{c_2}.$
Therefore, we have two values of the third side in which one is twice the other. This is the required proof.
Note: Whenever two sides of a triangle are given along with the angle made by these two sides, we can use cosine rule to find out the third side.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

The draft of the Preamble of the Indian Constitution class 10 social science CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who gave "Inqilab Zindabad" slogan?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Who is the Brand Ambassador of Incredible India?

