The sides of a triangle are $3cm$, $5cm$ and $4cm$. Its area is:
A). $6c{m^2}$
B). $7.5c{m^2}$
C). $5\sqrt 2 c{m^2}$
D). None of these
Answer
Verified
388.8k+ views
Hint: We are given that the lengths of the three sides of a triangle are $3cm$, $5cm$ and $4cm$. So, for finding the area of the triangle we will use Heron’s formula. According to Heron’s formula area of a triangle whose sides are of length $a$, $b$ and $c$ units is given as: $Area = \sqrt {s\left( {s - a} \right)\left( {s - b} \right)\left( {s - c} \right)} $ , here $'s'$ is the semi-perimeter of the triangle as $s = \dfrac{{a + b + c}}{2}$ .
Formula: $Area = \sqrt {s\left( {s - a} \right)\left( {s - b} \right)\left( {s - c} \right)} $ and $s = \dfrac{{a + b + c}}{2}$
Complete step-by-step solution:
Given: lengths of a triangle are $3cm$, $5cm$ and $4cm$.
Let $a = 3cm$, $b = 5cm$ and $c = 4cm$.
So, the perimeter of the triangle will be:
$s = \dfrac{{3 + 5 + 4}}{2}cm$
$ \Rightarrow s = \dfrac{{12}}{2}cm$
$ \Rightarrow s = 6cm$
As we know area of a triangle whose lengths of all three sides are known is given as:
$Area = \sqrt {s\left( {s - a} \right)\left( {s - b} \right)\left( {s - c} \right)} .......\left( i \right)$
We have,
$s = 6cm$, $a = 3cm$, $b = 5cm$ and $c = 4cm$.
Substitute all the values in equation $\left( i \right)$
$Area = \sqrt {6\left( {6 - 3} \right)\left( {6 - 5} \right)\left( {6 - 4} \right)} c{m^2}$
After subtraction, we get
$ \Rightarrow Area = \sqrt {6\left( 3 \right)\left( 1 \right)\left( 2 \right)} c{m^2}$
$ \Rightarrow Area = \sqrt {6 \times 3 \times 1 \times 2} c{m^2}$
After multiplication, we get
$ \Rightarrow Area = \sqrt {36} c{m^2}$
The square root of a number can be both positive and negative. But here we have to find an area so we will write only the positive value of square root because the area can’t be negative.
$ \Rightarrow Area = 6c{m^2}$
So, the area of the triangle is $6c{m^2}$.
Hence, option (A) is the correct answer.
Note: Here, by the word semi-perimeter we mean half of the perimeter of the triangle. So, for finding the semi-perimeter we just divide the perimeter by $2$. Students should be careful about the unit. In the given question units are the same but they can be different in any other question. Calculations should be done in the same unit. Write area only in positive value because area can’t be negative as it is the region occupied inside the boundary.
Formula: $Area = \sqrt {s\left( {s - a} \right)\left( {s - b} \right)\left( {s - c} \right)} $ and $s = \dfrac{{a + b + c}}{2}$
Complete step-by-step solution:
Given: lengths of a triangle are $3cm$, $5cm$ and $4cm$.
Let $a = 3cm$, $b = 5cm$ and $c = 4cm$.
So, the perimeter of the triangle will be:
$s = \dfrac{{3 + 5 + 4}}{2}cm$
$ \Rightarrow s = \dfrac{{12}}{2}cm$
$ \Rightarrow s = 6cm$
As we know area of a triangle whose lengths of all three sides are known is given as:
$Area = \sqrt {s\left( {s - a} \right)\left( {s - b} \right)\left( {s - c} \right)} .......\left( i \right)$
We have,
$s = 6cm$, $a = 3cm$, $b = 5cm$ and $c = 4cm$.
Substitute all the values in equation $\left( i \right)$
$Area = \sqrt {6\left( {6 - 3} \right)\left( {6 - 5} \right)\left( {6 - 4} \right)} c{m^2}$
After subtraction, we get
$ \Rightarrow Area = \sqrt {6\left( 3 \right)\left( 1 \right)\left( 2 \right)} c{m^2}$
$ \Rightarrow Area = \sqrt {6 \times 3 \times 1 \times 2} c{m^2}$
After multiplication, we get
$ \Rightarrow Area = \sqrt {36} c{m^2}$
The square root of a number can be both positive and negative. But here we have to find an area so we will write only the positive value of square root because the area can’t be negative.
$ \Rightarrow Area = 6c{m^2}$
So, the area of the triangle is $6c{m^2}$.
Hence, option (A) is the correct answer.
Note: Here, by the word semi-perimeter we mean half of the perimeter of the triangle. So, for finding the semi-perimeter we just divide the perimeter by $2$. Students should be careful about the unit. In the given question units are the same but they can be different in any other question. Calculations should be done in the same unit. Write area only in positive value because area can’t be negative as it is the region occupied inside the boundary.
Recently Updated Pages
What percentage of the area in India is covered by class 10 social science CBSE
The area of a 6m wide road outside a garden in all class 10 maths CBSE
What is the electric flux through a cube of side 1 class 10 physics CBSE
If one root of x2 x k 0 maybe the square of the other class 10 maths CBSE
The radius and height of a cylinder are in the ratio class 10 maths CBSE
An almirah is sold for 5400 Rs after allowing a discount class 10 maths CBSE
Trending doubts
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Write a letter to the principal requesting him to grant class 10 english CBSE
Explain the Treaty of Vienna of 1815 class 10 social science CBSE
Write an application to the principal requesting five class 10 english CBSE