The sides of a triangle are 4, 5 and 6 cm. the area of the triangle is equal to
(a) $\dfrac{15}{4}c{{m}^{2}}$
(b) $\dfrac{15}{4}\sqrt{7}c{{m}^{2}}$
(c) $\dfrac{4}{15}c{{m}^{2}}$
(d) None of these
Answer
Verified
485.1k+ views
Hint: Here, we are given that the lengths of the three sides of the triangle are 4, 5 and 6 cm. So, for finding the area of the triangle, we will use Heron’s formula, according to this formula area of a triangle whose sides are of length a, b and c units is give as $Area=\sqrt{s\left( s-a \right)\left( s-b \right)\left( s-c \right)}$, here ‘s’ is the semi-perimeter of the triangle given as $s=\dfrac{a+b+c}{2}$.
Complete step-by-step answer:
Since, the lengths of the three sides of the triangle are 4 cm, 5 cm and 6 cm. So, the semi-perimeter of this triangle will be:
$s=\dfrac{\left( 4+5+6 \right)cm}{2}=\dfrac{15}{2}cm$
We know that according to Heron’s formula the area of a triangle whose lengths of all three sides are known is given as:
$Area=\sqrt{s\left( s-a \right)\left( s-b \right)\left( s-c \right)}..........\left( 1 \right)$
We have, a = 4 cm, b = 5 cm and c = 6 cm. On substituting all the values in equation (1), we get:
\[\begin{align}
& Area=\sqrt{\dfrac{15}{2}\left( \dfrac{15}{2}-4 \right)\left( \dfrac{15}{2}-5 \right)\left( \dfrac{15}{2}-6 \right)} \\
& \Rightarrow Area=\sqrt{\dfrac{15}{2}\times \left( \dfrac{15-8}{2} \right)\times \left( \dfrac{15-10}{2} \right)\times \left( \dfrac{15-12}{2} \right)} \\
& \Rightarrow Area=\sqrt{\dfrac{15}{2}\times \dfrac{7}{2}\times \dfrac{5}{2}\times \dfrac{3}{2}} \\
& \Rightarrow Area=\sqrt{\dfrac{15}{2}\times \dfrac{15}{2}\times \dfrac{7}{2}\times \dfrac{1}{2}} \\
& \Rightarrow Area=\dfrac{15}{2}\sqrt{\dfrac{7}{4}} \\
& \Rightarrow Area=\dfrac{15}{4}\sqrt{7}c{{m}^{2}} \\
\end{align}\]
So, the area of the triangle is $\dfrac{15}{4}\sqrt{7}c{{m}^{2}}$.
Hence, option (d) is the correct answer.
Note: Students should note that by the word semi-perimeter, we mean half of the perimeter of the triangle. So, for finding the semi-perimeter we just divide the perimeter of the triangle by 2. Calculations which are performed under square root should be carefully done like here we multiplied 5 and 3 which are in the square root to make it 15, so that we can take it out of the square root.
Complete step-by-step answer:
Since, the lengths of the three sides of the triangle are 4 cm, 5 cm and 6 cm. So, the semi-perimeter of this triangle will be:
$s=\dfrac{\left( 4+5+6 \right)cm}{2}=\dfrac{15}{2}cm$
We know that according to Heron’s formula the area of a triangle whose lengths of all three sides are known is given as:
$Area=\sqrt{s\left( s-a \right)\left( s-b \right)\left( s-c \right)}..........\left( 1 \right)$
We have, a = 4 cm, b = 5 cm and c = 6 cm. On substituting all the values in equation (1), we get:
\[\begin{align}
& Area=\sqrt{\dfrac{15}{2}\left( \dfrac{15}{2}-4 \right)\left( \dfrac{15}{2}-5 \right)\left( \dfrac{15}{2}-6 \right)} \\
& \Rightarrow Area=\sqrt{\dfrac{15}{2}\times \left( \dfrac{15-8}{2} \right)\times \left( \dfrac{15-10}{2} \right)\times \left( \dfrac{15-12}{2} \right)} \\
& \Rightarrow Area=\sqrt{\dfrac{15}{2}\times \dfrac{7}{2}\times \dfrac{5}{2}\times \dfrac{3}{2}} \\
& \Rightarrow Area=\sqrt{\dfrac{15}{2}\times \dfrac{15}{2}\times \dfrac{7}{2}\times \dfrac{1}{2}} \\
& \Rightarrow Area=\dfrac{15}{2}\sqrt{\dfrac{7}{4}} \\
& \Rightarrow Area=\dfrac{15}{4}\sqrt{7}c{{m}^{2}} \\
\end{align}\]
So, the area of the triangle is $\dfrac{15}{4}\sqrt{7}c{{m}^{2}}$.
Hence, option (d) is the correct answer.
Note: Students should note that by the word semi-perimeter, we mean half of the perimeter of the triangle. So, for finding the semi-perimeter we just divide the perimeter of the triangle by 2. Calculations which are performed under square root should be carefully done like here we multiplied 5 and 3 which are in the square root to make it 15, so that we can take it out of the square root.
Recently Updated Pages
If the perimeter of the equilateral triangle is 18-class-10-maths-CBSE
How do you make the plural form of most of the words class 10 english CBSE
Quotes and Slogans on Consumer Rights Can Anybody Give Me
What is the orbit of a satellite Find out the basis class 10 physics CBSE
the period from 1919 to 1947 forms an important phase class 10 social science CBSE
If the average marks of three batches of 55 60 and class 10 maths CBSE
Trending doubts
Imagine that you have the opportunity to interview class 10 english CBSE
Find the area of the minor segment of a circle of radius class 10 maths CBSE
Fill the blanks with proper collective nouns 1 A of class 10 english CBSE
Frogs can live both on land and in water name the adaptations class 10 biology CBSE
Fill in the blank One of the students absent yesterday class 10 english CBSE
Write a letter to the Principal of your school requesting class 10 english CBSE