Answer
Verified
483.6k+ views
Hint: Recall the definition of natural number. List them and try finding which is the smallest natural number from the list. Finally claim that number is the smallest natural number.
Complete step-by-step answer:
Natural Number: Number 1,2,3,… are called natural numbers. They are also known as counting numbers as these numbers are used for counting.
As can be seen from the definition 1 is the smallest natural number.
Claim: 1 is the smallest natural number.
Proof: Suppose not
Let there exists another natural number $a$ such that $a<1$ and a is a natural number.
Also since natural numbers have at least 1 as the difference between them
Hence we have $1-a\ge 1$
Since every natural number is >0, we have
$a>0$
Hence we have $1\ge 1+a>1$
Hence 1>1, which is a contradiction. Hence 1 is the smallest natural number.
Hence option [b] is correct.
Note: [1] The number 1 is called the greatest lower bound of natural numbers. A number m is said to be the greatest lower bound of a set A if \[\forall a\in A,m\le a\] and $\forall c$ such that $c\le a\forall a\in A$ we have $m\ge c$.
[2] Real numbers have greatest lower bound property,i.e. if a set A which is a subset of R has a lower bound, then A has greatest lower bound also. The natural numbers have a lower bound 0. Hence according to this property they have the greatest lower bound also which is true since 1 is the greatest lower bound of natural numbers.
Complete step-by-step answer:
Natural Number: Number 1,2,3,… are called natural numbers. They are also known as counting numbers as these numbers are used for counting.
As can be seen from the definition 1 is the smallest natural number.
Claim: 1 is the smallest natural number.
Proof: Suppose not
Let there exists another natural number $a$ such that $a<1$ and a is a natural number.
Also since natural numbers have at least 1 as the difference between them
Hence we have $1-a\ge 1$
Since every natural number is >0, we have
$a>0$
Hence we have $1\ge 1+a>1$
Hence 1>1, which is a contradiction. Hence 1 is the smallest natural number.
Hence option [b] is correct.
Note: [1] The number 1 is called the greatest lower bound of natural numbers. A number m is said to be the greatest lower bound of a set A if \[\forall a\in A,m\le a\] and $\forall c$ such that $c\le a\forall a\in A$ we have $m\ge c$.
[2] Real numbers have greatest lower bound property,i.e. if a set A which is a subset of R has a lower bound, then A has greatest lower bound also. The natural numbers have a lower bound 0. Hence according to this property they have the greatest lower bound also which is true since 1 is the greatest lower bound of natural numbers.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
What was the Metternich system and how did it provide class 11 social science CBSE
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
What is BLO What is the full form of BLO class 8 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Students Also Read