Answer
Verified
493.2k+ views
Hint: Recall the definition of natural number. List them and try finding which is the smallest natural number from the list. Finally claim that number is the smallest natural number.
Complete step-by-step answer:
Natural Number: Number 1,2,3,… are called natural numbers. They are also known as counting numbers as these numbers are used for counting.
As can be seen from the definition 1 is the smallest natural number.
Claim: 1 is the smallest natural number.
Proof: Suppose not
Let there exists another natural number $a$ such that $a<1$ and a is a natural number.
Also since natural numbers have at least 1 as the difference between them
Hence we have $1-a\ge 1$
Since every natural number is >0, we have
$a>0$
Hence we have $1\ge 1+a>1$
Hence 1>1, which is a contradiction. Hence 1 is the smallest natural number.
Hence option [b] is correct.
Note: [1] The number 1 is called the greatest lower bound of natural numbers. A number m is said to be the greatest lower bound of a set A if \[\forall a\in A,m\le a\] and $\forall c$ such that $c\le a\forall a\in A$ we have $m\ge c$.
[2] Real numbers have greatest lower bound property,i.e. if a set A which is a subset of R has a lower bound, then A has greatest lower bound also. The natural numbers have a lower bound 0. Hence according to this property they have the greatest lower bound also which is true since 1 is the greatest lower bound of natural numbers.
Complete step-by-step answer:
Natural Number: Number 1,2,3,… are called natural numbers. They are also known as counting numbers as these numbers are used for counting.
As can be seen from the definition 1 is the smallest natural number.
Claim: 1 is the smallest natural number.
Proof: Suppose not
Let there exists another natural number $a$ such that $a<1$ and a is a natural number.
Also since natural numbers have at least 1 as the difference between them
Hence we have $1-a\ge 1$
Since every natural number is >0, we have
$a>0$
Hence we have $1\ge 1+a>1$
Hence 1>1, which is a contradiction. Hence 1 is the smallest natural number.
Hence option [b] is correct.
Note: [1] The number 1 is called the greatest lower bound of natural numbers. A number m is said to be the greatest lower bound of a set A if \[\forall a\in A,m\le a\] and $\forall c$ such that $c\le a\forall a\in A$ we have $m\ge c$.
[2] Real numbers have greatest lower bound property,i.e. if a set A which is a subset of R has a lower bound, then A has greatest lower bound also. The natural numbers have a lower bound 0. Hence according to this property they have the greatest lower bound also which is true since 1 is the greatest lower bound of natural numbers.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Students Also Read