Answer
Verified
482.7k+ views
Hint: The largest number of n digits is 9999…9 (n times) and the smallest number of n-digits = 10….0(n-1 times).Hence find the largest number of six digits and the smallest number of seven digits. Verify which of the options are correct
Complete step-by-step answer:
We know the largest n-digit number is 9999…99 (n times).
Hence the largest six-digit number is 9,99,999.
The smallest n – digits number is 1000….00(n-1 times).
Hence the smallest 7-digit number is 10,00,000.
Largest number of six-digits+1 = 9,99,999+=10,00,000 = Smallest number of seven digits.
Hence option [c] is correct.
Note: [1] Largest number of n digits is 9999…9 (n times).
Proof: Consider an arbitrary n -digit number $a={{a}_{1}}{{a}_{2}}...{{a}_{n}},a\ne 999\ldots 99$
Since the numbers are not equal, they differ by at least one decimal place.
Let i=k be the smallest value of i, such that ${{a}_{i}}\ne 9$.
So we have $a=999..{{a}_{k}}{{a}_{k+1}}...{{a}_{n}}$.
Since $0\le {{a}_{k}}\le 9$we have ${{a}_{k}}<9$
So, we have a<999…99
Hence 999..99 is the largest n-digit number
[2] Smallest number of n-digits is 1000…0 (n-1 times).
Proof: Consider an arbitrary n -digit number $a={{a}_{1}}{{a}_{2}}...{{a}_{n}},a\ne 100...00$
Since a is an n-digit number we have ${{a}_{1}}\ge 1$
If ${{a}_{1}}>1$, then clearly a>100…00 and we are done.
If ${{a}_{1}}=1$, then since a is not equal to 100…00, they differ by at least one decimal place.
Let i=k be the smallest value of i such that $i>1,{{a}_{i}}\ne 0$.
So, we have $a=100...{{a}_{k}}{{a}_{k+1}}\ldots {{a}_{n}}$
Since $0\le {{a}_{k}}\le 9$we have ${{a}_{k}}>0$
So a>100…00.
Hence proved.
Complete step-by-step answer:
We know the largest n-digit number is 9999…99 (n times).
Hence the largest six-digit number is 9,99,999.
The smallest n – digits number is 1000….00(n-1 times).
Hence the smallest 7-digit number is 10,00,000.
Largest number of six-digits+1 = 9,99,999+=10,00,000 = Smallest number of seven digits.
Hence option [c] is correct.
Note: [1] Largest number of n digits is 9999…9 (n times).
Proof: Consider an arbitrary n -digit number $a={{a}_{1}}{{a}_{2}}...{{a}_{n}},a\ne 999\ldots 99$
Since the numbers are not equal, they differ by at least one decimal place.
Let i=k be the smallest value of i, such that ${{a}_{i}}\ne 9$.
So we have $a=999..{{a}_{k}}{{a}_{k+1}}...{{a}_{n}}$.
Since $0\le {{a}_{k}}\le 9$we have ${{a}_{k}}<9$
So, we have a<999…99
Hence 999..99 is the largest n-digit number
[2] Smallest number of n-digits is 1000…0 (n-1 times).
Proof: Consider an arbitrary n -digit number $a={{a}_{1}}{{a}_{2}}...{{a}_{n}},a\ne 100...00$
Since a is an n-digit number we have ${{a}_{1}}\ge 1$
If ${{a}_{1}}>1$, then clearly a>100…00 and we are done.
If ${{a}_{1}}=1$, then since a is not equal to 100…00, they differ by at least one decimal place.
Let i=k be the smallest value of i such that $i>1,{{a}_{i}}\ne 0$.
So, we have $a=100...{{a}_{k}}{{a}_{k+1}}\ldots {{a}_{n}}$
Since $0\le {{a}_{k}}\le 9$we have ${{a}_{k}}>0$
So a>100…00.
Hence proved.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Who gave the slogan Jai Hind ALal Bahadur Shastri BJawaharlal class 11 social science CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE
Students Also Read