Answer
Verified
493.2k+ views
Hint: The largest number of n digits is 9999…9 (n times) and the smallest number of n-digits = 10….0(n-1 times).Hence find the largest number of six digits and the smallest number of seven digits. Verify which of the options are correct
Complete step-by-step answer:
We know the largest n-digit number is 9999…99 (n times).
Hence the largest six-digit number is 9,99,999.
The smallest n – digits number is 1000….00(n-1 times).
Hence the smallest 7-digit number is 10,00,000.
Largest number of six-digits+1 = 9,99,999+=10,00,000 = Smallest number of seven digits.
Hence option [c] is correct.
Note: [1] Largest number of n digits is 9999…9 (n times).
Proof: Consider an arbitrary n -digit number $a={{a}_{1}}{{a}_{2}}...{{a}_{n}},a\ne 999\ldots 99$
Since the numbers are not equal, they differ by at least one decimal place.
Let i=k be the smallest value of i, such that ${{a}_{i}}\ne 9$.
So we have $a=999..{{a}_{k}}{{a}_{k+1}}...{{a}_{n}}$.
Since $0\le {{a}_{k}}\le 9$we have ${{a}_{k}}<9$
So, we have a<999…99
Hence 999..99 is the largest n-digit number
[2] Smallest number of n-digits is 1000…0 (n-1 times).
Proof: Consider an arbitrary n -digit number $a={{a}_{1}}{{a}_{2}}...{{a}_{n}},a\ne 100...00$
Since a is an n-digit number we have ${{a}_{1}}\ge 1$
If ${{a}_{1}}>1$, then clearly a>100…00 and we are done.
If ${{a}_{1}}=1$, then since a is not equal to 100…00, they differ by at least one decimal place.
Let i=k be the smallest value of i such that $i>1,{{a}_{i}}\ne 0$.
So, we have $a=100...{{a}_{k}}{{a}_{k+1}}\ldots {{a}_{n}}$
Since $0\le {{a}_{k}}\le 9$we have ${{a}_{k}}>0$
So a>100…00.
Hence proved.
Complete step-by-step answer:
We know the largest n-digit number is 9999…99 (n times).
Hence the largest six-digit number is 9,99,999.
The smallest n – digits number is 1000….00(n-1 times).
Hence the smallest 7-digit number is 10,00,000.
Largest number of six-digits+1 = 9,99,999+=10,00,000 = Smallest number of seven digits.
Hence option [c] is correct.
Note: [1] Largest number of n digits is 9999…9 (n times).
Proof: Consider an arbitrary n -digit number $a={{a}_{1}}{{a}_{2}}...{{a}_{n}},a\ne 999\ldots 99$
Since the numbers are not equal, they differ by at least one decimal place.
Let i=k be the smallest value of i, such that ${{a}_{i}}\ne 9$.
So we have $a=999..{{a}_{k}}{{a}_{k+1}}...{{a}_{n}}$.
Since $0\le {{a}_{k}}\le 9$we have ${{a}_{k}}<9$
So, we have a<999…99
Hence 999..99 is the largest n-digit number
[2] Smallest number of n-digits is 1000…0 (n-1 times).
Proof: Consider an arbitrary n -digit number $a={{a}_{1}}{{a}_{2}}...{{a}_{n}},a\ne 100...00$
Since a is an n-digit number we have ${{a}_{1}}\ge 1$
If ${{a}_{1}}>1$, then clearly a>100…00 and we are done.
If ${{a}_{1}}=1$, then since a is not equal to 100…00, they differ by at least one decimal place.
Let i=k be the smallest value of i such that $i>1,{{a}_{i}}\ne 0$.
So, we have $a=100...{{a}_{k}}{{a}_{k+1}}\ldots {{a}_{n}}$
Since $0\le {{a}_{k}}\le 9$we have ${{a}_{k}}>0$
So a>100…00.
Hence proved.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Students Also Read