
The solubility of $AgBr{O_3}$ (formula weight $ = 236$) is $0.0072\,g$ in $1000\,mL$. What is the value of ${K_{sp}}$?
A. $2.2 \times {10^{ - 8}}$
B. $3 \times {10^{ - 10}}$
C. \[3 \times {10^{ - 5}}\]
D. $9.3 \times {10^{ - 10}}$
Answer
410.7k+ views
Hint: The solubility product of an ionic compound is defined as the equilibrium constant for dissociation of a solid (ionic) substance into an aqueous solution. It is represented by the symbol ${K_{sp}}$. As the solubility of a solid increases with an increase in temperature, so the value of solubility product increases on increasing the temperature.
Complete answer: As per question, the given data is as follows:
Given mass of $AgBr{O_3} = 0.0072g$
Molecular mass of $AgBr{O_3} = 236\,gmo{l^{ - 1}}$
Therefore, number of moles of $AgBr{O_3} = \dfrac{{{\text{given mass}}}}{{{\text{molecular mass}}}}$
Substituting values:
$ \Rightarrow n = \dfrac{{0.0072}}{{236}}$
$ \Rightarrow n = 3.05 \times {10^{ - 5}}\;{\text{moles}}$
Given volume of solution$ = 1000\;mL$
$ \Rightarrow V = 1L$
We know that the concentration of a compound is the ratio of number of moles to the volume of solution. Therefore, concentration of $AgBr{O_3}$ in aqueous solution will be as follows:
Concentration $C = \dfrac{n}{V}$
Substituting values:
$ \Rightarrow C = \dfrac{{3.05 \times {{10}^{ - 5}}}}{1}$
$ \Rightarrow C = 3.05 \times {10^{ - 5}}mol{L^{ - 1}}$
Now, the dissociation of $AgBr{O_3}$ in aqueous solution takes place as follows:
$AgBr{O_3} \rightleftharpoons A{g^ + } + BrO_3^ - $
ICE table for the concentration of molecules in the given reaction is as follows:
Therefore, the solubility product of $AgBr{O_3}$ can be expressed as follows:
${K_{sp}} = \left[ {A{g^ + }} \right]\left[ {BrO_3^ - } \right]$
Substituting the values of final concentration from ICE table:
$ \Rightarrow {K_{sp}} = 3.05 \times {10^{ - 5}} \times 3.05 \times {10^{ - 5}}$
\[ \Rightarrow {K_{sp}} = 9.3 \times {10^{ - 10}}\]
Hence, the solubility product of $AgBr{O_3}$ under given conditions \[ = 9.3 \times {10^{ - 10}}\].
So, option (D) is the correct answer.
Note:
It is important to note that in ICE table, I stands for initial concentration of reactants and products, C stands for change in concentration i.e., the concentration of compounds required for a reaction to achieve equilibrium and E stands for equilibrium concentration i.e., the concentration of reactants and products after achieving equilibrium.
Complete answer: As per question, the given data is as follows:
Given mass of $AgBr{O_3} = 0.0072g$
Molecular mass of $AgBr{O_3} = 236\,gmo{l^{ - 1}}$
Therefore, number of moles of $AgBr{O_3} = \dfrac{{{\text{given mass}}}}{{{\text{molecular mass}}}}$
Substituting values:
$ \Rightarrow n = \dfrac{{0.0072}}{{236}}$
$ \Rightarrow n = 3.05 \times {10^{ - 5}}\;{\text{moles}}$
Given volume of solution$ = 1000\;mL$
$ \Rightarrow V = 1L$
We know that the concentration of a compound is the ratio of number of moles to the volume of solution. Therefore, concentration of $AgBr{O_3}$ in aqueous solution will be as follows:
Concentration $C = \dfrac{n}{V}$
Substituting values:
$ \Rightarrow C = \dfrac{{3.05 \times {{10}^{ - 5}}}}{1}$
$ \Rightarrow C = 3.05 \times {10^{ - 5}}mol{L^{ - 1}}$
Now, the dissociation of $AgBr{O_3}$ in aqueous solution takes place as follows:
$AgBr{O_3} \rightleftharpoons A{g^ + } + BrO_3^ - $
ICE table for the concentration of molecules in the given reaction is as follows:
$\left[ {AgBr{O_3}} \right]$ | $\left[ {A{g^ + }} \right]$ | $\left[ {BrO_3^ - } \right]$ | |
Initial concentration | $3.05 \times {10^{ - 5}}mol{L^{ - 1}}$ | $0$ | $0$ |
Change | $ - 3.05 \times {10^{ - 5}}$ | $ + 3.05 \times {10^{ - 5}}$ | $ + 3.05 \times {10^{ - 5}}$ |
Concentration at equilibrium | $0$ | $3.05 \times {10^{ - 5}}mol{L^{ - 1}}$ | $3.05 \times {10^{ - 5}}mol{L^{ - 1}}$ |
Therefore, the solubility product of $AgBr{O_3}$ can be expressed as follows:
${K_{sp}} = \left[ {A{g^ + }} \right]\left[ {BrO_3^ - } \right]$
Substituting the values of final concentration from ICE table:
$ \Rightarrow {K_{sp}} = 3.05 \times {10^{ - 5}} \times 3.05 \times {10^{ - 5}}$
\[ \Rightarrow {K_{sp}} = 9.3 \times {10^{ - 10}}\]
Hence, the solubility product of $AgBr{O_3}$ under given conditions \[ = 9.3 \times {10^{ - 10}}\].
So, option (D) is the correct answer.
Note:
It is important to note that in ICE table, I stands for initial concentration of reactants and products, C stands for change in concentration i.e., the concentration of compounds required for a reaction to achieve equilibrium and E stands for equilibrium concentration i.e., the concentration of reactants and products after achieving equilibrium.
Recently Updated Pages
The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE

Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE

With reference to graphite and diamond which of the class 11 chemistry CBSE

A certain household has consumed 250 units of energy class 11 physics CBSE

The lightest metal known is A beryllium B lithium C class 11 chemistry CBSE

What is the formula mass of the iodine molecule class 11 chemistry CBSE

Trending doubts
How is phenol converted to salicylic acid class 11 chemistry CBSE

Why was the Vernacular Press Act passed by British class 11 social science CBSE

Arrange Water ethanol and phenol in increasing order class 11 chemistry CBSE

Name the nuclear plant located in Uttar Pradesh class 11 social science CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

What steps did the French revolutionaries take to create class 11 social science CBSE
