
The sum of coefficients of all odd degree terms in the expansion of ${\left( {x + \sqrt {{x^3} - 1} } \right)^5} + {\left( {x - \sqrt {{x^3} - 1} } \right)^5},{\text{ }}\left( {x > 1} \right)$ is
A) $1$
B) $2$
C) $ - 1$
D) $0$
Answer
580.5k+ views
Hint: We know how to expand a binomial expression like
${\left( {a + b} \right)^n} = {}^n{C_0}{a^n} + {}^n{C_1}{a^{n - 1}}b + {}^n{C_2}{a^{n - 2}}{b^2} + {\text{ - - - - - - - - - - - - - - - - - - }}{}^n{C_n}{a^0}{b^n}$
Similarly, expand both the expression and add them , then we will find an expression from which you need to add the coefficient of all odd degree terms.
Complete step-by-step answer:
Here, according to question, we are given an expression
${\left( {x + \sqrt {{x^3} - 1} } \right)^5} + {\left( {x - \sqrt {{x^3} - 1} } \right)^5}$
So, let us use binomial expansion formula
${\left( {a + b} \right)^n} = {}^n{C_0}{a^n} + {}^n{C_1}{a^{n - 1}}b + {}^n{C_2}{a^{n - 2}}{b^2} + {\text{ - - - - - - - - - - - - - - - - - - }}{}^n{C_n}{a^0}{b^n}$
So, let us first expand ${\left( {x + \sqrt {{x^3} - 1} } \right)^5}$
So, here $a = x{\text{ and }}b = \sqrt {{x^3} - 1} $.
So, ${\left( {x + \sqrt {{x^3} - 1} } \right)^5} = {x^5} + {}^5{C_1}{x^4}\sqrt {{x^3} - 1} + {}^5{C_2}{x^3}\left( {{x^3} - 1} \right) + {}^5{C_3}{x^2}\left( {{x^3} - 1} \right)\sqrt {{x^3} - 1} + {}^5{C_4}x{\left( {{x^3} - 1} \right)^2} + {}^5{C_5}{\left( {{x^3} - 1} \right)^2}\sqrt {{x^3} - 1} $
On further expansion we get,
$
{\left( {x + \sqrt {{x^3} - 1} } \right)^5} = {x^5} + \dfrac{{5!}}{{4!1!}}{x^4}\sqrt {{x^3} - 1} + \dfrac{{5!}}{{2!3!}}{x^3}\left( {{x^3} - 1} \right) + \dfrac{{5!}}{{2!3!}}{x^2}\left( {{x^3} - 1} \right)\sqrt {{x^3} - 1} + \dfrac{{5!}}{{4!1!}}x{\left( {{x^3} - 1} \right)^2} + \dfrac{{5!}}{{5!0!}}{\left( {{x^3} - 1} \right)^2}\sqrt {{x^3} - 1} \\
= {x^5} + 5{x^4}\sqrt {{x^3} - 1} + 10{x^6} - 10{x^3} + 10{x^5}\sqrt {{x^3} - 1} - 10{x^2}\sqrt {{x^3} - 1} + 5x\left( {{x^6} + 1 - 2{x^3}} \right) + \left( {{x^6} + 1 - 2{x^3}} \right)\sqrt {{x^3} - 1} {\text{ - - - - - - - - (1)}} \\
$
Now upon expanding ${\left( {x - \sqrt {{x^3} - 1} } \right)^5}$,
So, ${\left( {a - b} \right)^n}$. So, it has two cases.
If $n = {\text{even}}$, then
${a^n} - {}^n{C_1}{a^{n - 1}}b + {}^n{C_2}{a^{n - 2}}{b^2} + {\text{ - - - - - - - - - - - - - - - - - - + }}{b^n}$
If $n = {\text{odd}}$, then
${a^n} - {}^n{C_1}{a^{n - 1}}b + {}^n{C_2}{a^{n - 2}}{b^2} + {\text{ - - - - - - - - - - - - - - - - - - - }}{b^n}$
Here, $n = 5$, that is odd, so,
${\left( {x - \sqrt {{x^3} - 1} } \right)^5} = {x^5} - {}^5{C_1}{x^4}\sqrt {{x^3} - 1} + {}^5{C_2}{x^3}\left( {{x^3} - 1} \right) - {}^5{C_3}{x^2}\left( {{x^3} - 1} \right)\sqrt {{x^3} - 1} + {}^5{C_4}x{\left( {{x^3} - 1} \right)^2} - {}^5{C_5}{\left( {{x^3} - 1} \right)^2}\sqrt {{x^3} - 1} $
On further expanding,
$
{\left( {x - \sqrt {{x^3} - 1} } \right)^5} = {x^5} - \dfrac{{5!}}{{4!1!}}{x^4}\sqrt {{x^3} - 1} + \dfrac{{5!}}{{2!3!}}{x^3}\left( {{x^3} - 1} \right) - \dfrac{{5!}}{{2!3!}}{x^2}\left( {{x^3} - 1} \right)\sqrt {{x^3} - 1} + \dfrac{{5!}}{{4!1!}}x{\left( {{x^3} - 1} \right)^2} - \dfrac{{5!}}{{5!0!}}{\left( {{x^3} - 1} \right)^2}\sqrt {{x^3} - 1} \\
= {x^5} - 5{x^4}\sqrt {{x^3} - 1} + 10{x^6} - 10{x^3} - 10{x^5}\sqrt {{x^3} - 1} + 10{x^2}\sqrt {{x^3} - 1} + 5x\left( {{x^6} + 1 - 2{x^3}} \right) - \left( {{x^6} + 1 - 2{x^3}} \right)\sqrt {{x^3} - 1} {\text{ - - - - - - - - (2)}} \\
$
So, upon adding equation (1) and (2), we get
Let ${\left( {x + \sqrt {{x^3} - 1} } \right)^5} + {\left( {x - \sqrt {{x^3} - 1} } \right)^5} = S$
We will get
$
\Rightarrow S = \left( {2{x^5} + 20{x^6} - 20{x^3} + 10x\left( {{x^6} + 1 - 2{x^3}} \right)} \right) \\
\Rightarrow S = \left( {2{x^5} + 20{x^6} - 20{x^3} + 10{x^7} + 10x - 20{x^4}} \right) \\
$
Now, on rearranging,
$\Rightarrow$$S = 10x - 20{x^3} - 20{x^4} + 2{x^5} + 20{x^6} + 10{x^7}$
Now, sum of coefficient of odd power that means$ = 10 - 20 + 2 + 10 = 2$
So, our answer is $2$.
So, option B is the correct answer.
Note: We can do it by alternative method, that is, if ${\left( {A + B} \right)^n} + {\left( {A - B} \right)^n}$ is given, then its expansion will be
$2\left[ {{A^n} + {}^n{C_2}{A^{n - 2}}{B^2} + {}^n{C_4}{A^{n - 4}}{B^4}{\text{ - - - - - - - - }}} \right]$
We can directly use this formula and calculate the results.
${\left( {a + b} \right)^n} = {}^n{C_0}{a^n} + {}^n{C_1}{a^{n - 1}}b + {}^n{C_2}{a^{n - 2}}{b^2} + {\text{ - - - - - - - - - - - - - - - - - - }}{}^n{C_n}{a^0}{b^n}$
Similarly, expand both the expression and add them , then we will find an expression from which you need to add the coefficient of all odd degree terms.
Complete step-by-step answer:
Here, according to question, we are given an expression
${\left( {x + \sqrt {{x^3} - 1} } \right)^5} + {\left( {x - \sqrt {{x^3} - 1} } \right)^5}$
So, let us use binomial expansion formula
${\left( {a + b} \right)^n} = {}^n{C_0}{a^n} + {}^n{C_1}{a^{n - 1}}b + {}^n{C_2}{a^{n - 2}}{b^2} + {\text{ - - - - - - - - - - - - - - - - - - }}{}^n{C_n}{a^0}{b^n}$
So, let us first expand ${\left( {x + \sqrt {{x^3} - 1} } \right)^5}$
So, here $a = x{\text{ and }}b = \sqrt {{x^3} - 1} $.
So, ${\left( {x + \sqrt {{x^3} - 1} } \right)^5} = {x^5} + {}^5{C_1}{x^4}\sqrt {{x^3} - 1} + {}^5{C_2}{x^3}\left( {{x^3} - 1} \right) + {}^5{C_3}{x^2}\left( {{x^3} - 1} \right)\sqrt {{x^3} - 1} + {}^5{C_4}x{\left( {{x^3} - 1} \right)^2} + {}^5{C_5}{\left( {{x^3} - 1} \right)^2}\sqrt {{x^3} - 1} $
On further expansion we get,
$
{\left( {x + \sqrt {{x^3} - 1} } \right)^5} = {x^5} + \dfrac{{5!}}{{4!1!}}{x^4}\sqrt {{x^3} - 1} + \dfrac{{5!}}{{2!3!}}{x^3}\left( {{x^3} - 1} \right) + \dfrac{{5!}}{{2!3!}}{x^2}\left( {{x^3} - 1} \right)\sqrt {{x^3} - 1} + \dfrac{{5!}}{{4!1!}}x{\left( {{x^3} - 1} \right)^2} + \dfrac{{5!}}{{5!0!}}{\left( {{x^3} - 1} \right)^2}\sqrt {{x^3} - 1} \\
= {x^5} + 5{x^4}\sqrt {{x^3} - 1} + 10{x^6} - 10{x^3} + 10{x^5}\sqrt {{x^3} - 1} - 10{x^2}\sqrt {{x^3} - 1} + 5x\left( {{x^6} + 1 - 2{x^3}} \right) + \left( {{x^6} + 1 - 2{x^3}} \right)\sqrt {{x^3} - 1} {\text{ - - - - - - - - (1)}} \\
$
Now upon expanding ${\left( {x - \sqrt {{x^3} - 1} } \right)^5}$,
So, ${\left( {a - b} \right)^n}$. So, it has two cases.
If $n = {\text{even}}$, then
${a^n} - {}^n{C_1}{a^{n - 1}}b + {}^n{C_2}{a^{n - 2}}{b^2} + {\text{ - - - - - - - - - - - - - - - - - - + }}{b^n}$
If $n = {\text{odd}}$, then
${a^n} - {}^n{C_1}{a^{n - 1}}b + {}^n{C_2}{a^{n - 2}}{b^2} + {\text{ - - - - - - - - - - - - - - - - - - - }}{b^n}$
Here, $n = 5$, that is odd, so,
${\left( {x - \sqrt {{x^3} - 1} } \right)^5} = {x^5} - {}^5{C_1}{x^4}\sqrt {{x^3} - 1} + {}^5{C_2}{x^3}\left( {{x^3} - 1} \right) - {}^5{C_3}{x^2}\left( {{x^3} - 1} \right)\sqrt {{x^3} - 1} + {}^5{C_4}x{\left( {{x^3} - 1} \right)^2} - {}^5{C_5}{\left( {{x^3} - 1} \right)^2}\sqrt {{x^3} - 1} $
On further expanding,
$
{\left( {x - \sqrt {{x^3} - 1} } \right)^5} = {x^5} - \dfrac{{5!}}{{4!1!}}{x^4}\sqrt {{x^3} - 1} + \dfrac{{5!}}{{2!3!}}{x^3}\left( {{x^3} - 1} \right) - \dfrac{{5!}}{{2!3!}}{x^2}\left( {{x^3} - 1} \right)\sqrt {{x^3} - 1} + \dfrac{{5!}}{{4!1!}}x{\left( {{x^3} - 1} \right)^2} - \dfrac{{5!}}{{5!0!}}{\left( {{x^3} - 1} \right)^2}\sqrt {{x^3} - 1} \\
= {x^5} - 5{x^4}\sqrt {{x^3} - 1} + 10{x^6} - 10{x^3} - 10{x^5}\sqrt {{x^3} - 1} + 10{x^2}\sqrt {{x^3} - 1} + 5x\left( {{x^6} + 1 - 2{x^3}} \right) - \left( {{x^6} + 1 - 2{x^3}} \right)\sqrt {{x^3} - 1} {\text{ - - - - - - - - (2)}} \\
$
So, upon adding equation (1) and (2), we get
Let ${\left( {x + \sqrt {{x^3} - 1} } \right)^5} + {\left( {x - \sqrt {{x^3} - 1} } \right)^5} = S$
We will get
$
\Rightarrow S = \left( {2{x^5} + 20{x^6} - 20{x^3} + 10x\left( {{x^6} + 1 - 2{x^3}} \right)} \right) \\
\Rightarrow S = \left( {2{x^5} + 20{x^6} - 20{x^3} + 10{x^7} + 10x - 20{x^4}} \right) \\
$
Now, on rearranging,
$\Rightarrow$$S = 10x - 20{x^3} - 20{x^4} + 2{x^5} + 20{x^6} + 10{x^7}$
Now, sum of coefficient of odd power that means$ = 10 - 20 + 2 + 10 = 2$
So, our answer is $2$.
So, option B is the correct answer.
Note: We can do it by alternative method, that is, if ${\left( {A + B} \right)^n} + {\left( {A - B} \right)^n}$ is given, then its expansion will be
$2\left[ {{A^n} + {}^n{C_2}{A^{n - 2}}{B^2} + {}^n{C_4}{A^{n - 4}}{B^4}{\text{ - - - - - - - - }}} \right]$
We can directly use this formula and calculate the results.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

