
The sum of first $17$ terms of an A.P is $187$ . If the ${{17}^{th}}$ term is $-13$ , find the AP.
Answer
553.5k+ views
Hint: Problems of this type can be easily solved by using the formulas of Arithmetic Progressions. We use the formula of the summation of the terms of an A.P to get an expression and equate it to $187$where we will get the value of the first term of the A.P. Upon doing that we equate the expression of the 17th term to $-13$ which will give us the value of common difference of the A.P, thus we determine the A.P.
Complete step by step answer:
We are given that the sum of first $17$ terms of the A.P is $187$and the ${{17}^{th}}$ term is $-13$ .
We use the formula of summation of A.P as shown below
Sum of $n$ terms of an A.P is $\dfrac{n}{2}\left( a+l \right)$
Here $a$ is the value of first term of the A.P and $l$ is the ${{n}^{th}}$ term of the A.P
We already know that $n=17$ and $l=-13$
Therefore, the expression of the summation becomes $\dfrac{17}{2}\left( a-13 \right)$
We now equate the above expression to the given value of sum i.e., $187$ as shown below
$\dfrac{17}{2}\left( a-13 \right)=187$
$\Rightarrow 17\left( a-13 \right)=187\times 2$
$\Rightarrow 17a-17\times 13=187\times 2$
$\Rightarrow 17a-221=374$
$\Rightarrow 17a=374+221$
$\Rightarrow 17a=595$
$\Rightarrow a=\dfrac{595}{17}$
$\therefore a=35$
Hence, the 1st term of the A.P is $35$
We also know that the formula of the value of ${{n}^{th}}$ term of the A.P is $a+\left( n-1 \right)d$
Here, $d$ is the common difference between two consecutive terms of the A.P
We can equate the above expression to $-13$ by putting $a=35$ and $n=17$ as shown below
$35+\left( 17-1 \right)d=-13$
$\Rightarrow \left( 17-1 \right)d=-13-35$
$\Rightarrow 16d=-48$
$\Rightarrow d=-\dfrac{48}{16}$
$\therefore d=-3$
Hence, the common difference between two consecutive terms of the A.P is $-3$
Therefore, the A.P is \[35,\text{ }32,\text{ }29,\text{ }26,\text{ }23,\text{ }20,\text{ }17,\text{ }14,\text{ }11,\text{ }8,\text{ }5,\text{ }2,\text{ }-1,\text{ }-4,\text{ }-7,\text{ }-10,\text{ }-13\]
Note: While developing the expression of summation of the terms of A.P we could have also used the formula for summation $\dfrac{n}{2}\left\{ 2a+\left( n-1 \right)d \right\}$ but the problem is the solution will become lengthier. This happens due to the fact that we have to solve two equations simultaneously to get the two variables $a$ and $d$ rather than simply solving each of the equations one by one to get the solutions.
Complete step by step answer:
We are given that the sum of first $17$ terms of the A.P is $187$and the ${{17}^{th}}$ term is $-13$ .
We use the formula of summation of A.P as shown below
Sum of $n$ terms of an A.P is $\dfrac{n}{2}\left( a+l \right)$
Here $a$ is the value of first term of the A.P and $l$ is the ${{n}^{th}}$ term of the A.P
We already know that $n=17$ and $l=-13$
Therefore, the expression of the summation becomes $\dfrac{17}{2}\left( a-13 \right)$
We now equate the above expression to the given value of sum i.e., $187$ as shown below
$\dfrac{17}{2}\left( a-13 \right)=187$
$\Rightarrow 17\left( a-13 \right)=187\times 2$
$\Rightarrow 17a-17\times 13=187\times 2$
$\Rightarrow 17a-221=374$
$\Rightarrow 17a=374+221$
$\Rightarrow 17a=595$
$\Rightarrow a=\dfrac{595}{17}$
$\therefore a=35$
Hence, the 1st term of the A.P is $35$
We also know that the formula of the value of ${{n}^{th}}$ term of the A.P is $a+\left( n-1 \right)d$
Here, $d$ is the common difference between two consecutive terms of the A.P
We can equate the above expression to $-13$ by putting $a=35$ and $n=17$ as shown below
$35+\left( 17-1 \right)d=-13$
$\Rightarrow \left( 17-1 \right)d=-13-35$
$\Rightarrow 16d=-48$
$\Rightarrow d=-\dfrac{48}{16}$
$\therefore d=-3$
Hence, the common difference between two consecutive terms of the A.P is $-3$
Therefore, the A.P is \[35,\text{ }32,\text{ }29,\text{ }26,\text{ }23,\text{ }20,\text{ }17,\text{ }14,\text{ }11,\text{ }8,\text{ }5,\text{ }2,\text{ }-1,\text{ }-4,\text{ }-7,\text{ }-10,\text{ }-13\]
Note: While developing the expression of summation of the terms of A.P we could have also used the formula for summation $\dfrac{n}{2}\left\{ 2a+\left( n-1 \right)d \right\}$ but the problem is the solution will become lengthier. This happens due to the fact that we have to solve two equations simultaneously to get the two variables $a$ and $d$ rather than simply solving each of the equations one by one to get the solutions.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

